«Анализ и проектирование алгоритма симплекс-метода для решения задач линейного программирования.»


Пример. Описание области допустимых решений.  Рисунок В - Область допустимых решений ЗЛП Мы можем записать уравнение границы области D


Download 490.31 Kb.
bet4/11
Sana18.06.2023
Hajmi490.31 Kb.
#1585862
TuriЗадача
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Лиля-1

Пример. Описание области допустимых решений. 
Рисунок В - Область допустимых решений ЗЛП
Мы можем записать уравнение границы области D заданной неравенствами:

Основные понятия и теоремы линейной алгебры Важным понятием линейной алгебры является понятие линейного векторного пространства. Определение 2.1. Упорядоченная совокупность n действительных чисел называется n-мерным вектором. Определение 2.2. Совокупность всевозможных n-мерных векторов после введения в нее операций сложения и умножения на действительное число называется n-мерным линейным векторным пространством. Частными случаями линейных пространств являются прямая, плоскость, трехмерное пространство. Определение 2.3. Система векторов X1, X2, ..., Xназывается линейно зависимой, если существуют такие числа λ1, λ2, …, λn, не равные нулю одновременно, при которых имеет место равенство: λ1X1λ2X2 …+ λn Xn=0 , где все λi ≥0 и λ1+ λ2+ …+ λn =1. Если же это равенство возможно лишь в случае, когда все λi = 0 (i = 1(1)n) , то система векторов называется линейно независимой. Определение 2.4. Базисом n-мерного векторного пространства называется любая совокупность n линейно независимых векторов этого пространства. В двумерном пространстве за базис могут быть взяты любые два неколлинеарных вектора, в частности, е1 = (1,0), е2 = (0, 1). В трехмерном пространстве – любые три некомпланарных вектора, напримере1 = (1,0,0), е2 = (0,1,0), е3 = (0,0,1).
Выпуклой линейной комбинацией точек X1, X2, ..., Xn называется линейная комбинация вида: X= λ1X1λ2X2 …+ λn Xn где все λi ≥0 и λ1+ λ2+ …+ λn =1. В частности, когда имеются две точки X1 и X2, то их выпуклая комбинация λX1+(1- λ)X2λ ∈[0,1] представляет собой точку на отрезке, соединяющем эти точки.

Download 490.31 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling