Analytical Mechanics This page intentionally left blank


Download 10.87 Mb.
Pdf ko'rish
bet9/55
Sana30.08.2017
Hajmi10.87 Mb.
#14604
1   ...   5   6   7   8   9   10   11   12   ...   55

n

t

C

s

h

G

O

x

Fig. 4.5


If the parametric equations of γ are x = f (s), y = g(s), we are in the

conditions ensuring that at the origin O

f (0) = 0,

f (0)= 1,

f (0) = 0,

g(0) = 0,

g (0) = 0,

g (0) = k(0) = k

0

.

In addition along all of the curve, by the orthogonality of n and t, f



=

−kg ,


g

= kf . The coordinates ξ

0

, η


0

of O in the system (C, t, n) are obtained

from C

− O = fe


1

+ ge


2

=

−(ξ



0

t + η


0

n), from which it follows that

ξ

0

=



−(ff + gg ), η

0

= f g



− gf .

The coordinates of G can be found from

G

− O = he


2

= (ξ


G

− ξ


0

)t + (η


G

− η


0

)n.


We require the height

η

G



= η

0

+ hf = f g



− gf + hf .

By differentiation we find

η

G

= f g



− gf + hf = k(ff + gg − hg )

(which vanishes at s = 0), and

η

G

= k (f f + gg



− hg ) + k[1 + k(g − h)f − kfg ],

which yields

η

G

(0) = k



0

− k


2

0

h.



4.14

The dynamics of discrete systems. Lagrangian formalism

167

The stability condition is η



G

(0) > 0, and hence h < k

−1

0

, proving (i). In the



case that hk

0

= 1 we can compute η



G

and find η

G

(0) =


−k (0), and hence

for stability we must have that k (0) = 0. Computing η

IV

G

(0) =



−k (0) we

find the stability condition k (0) < 0, etc.

(ii) The potential energy is

V (s) = mgη

G

(s)


(m is the mass of the plate, g is the acceleration due to gravity). The

kinetic energy is T =

1

2

I(s) ˙



ϕ

2

, where I(s) denotes the moment of inertia



with respect to the rotation axis. Let ϕ be the angle that the vector G

− O


makes with the vertical direction. We then find cos ϕ = f (s), sin ϕ = g (s).

By differentiating the latter with respect to time we obtain ˙

ϕ = (g /f ) ˙s. For

I(s) we have I(s) = m(G

− C)

2

+ I



G

, where I

G

is the moment of inertia with



respect to the axis normal to the plate for G. Since ξ

G

=



−(ff + gg ) + hg

this yields (G

− C)

2

= ξ



2

G

+ η



2

G

= f



2

+ (h


− g)

2

(see also Fig. 4.5). Therefore,



the Lagrangian is

L(s, ˙s) =

1

2

m[f



2

+ (h


− g)

2

] + I



G

k

2



˙s

2

.



Its quadratic approximation is

L(s, ˙s) =

1

2

mh



2

+ I


G

k

2



0

˙s

2



1

2



mg k

0

− k



2

0

h s



2

,

producing harmonic motion ¨



s + ω

2

s = 0 of frequency



ω =

g(1


− k

0

h)



k

0

(h



2

+ δ


2

G

)



1/2

,

δ



2

G

= I



G

/m

(k



0

h < 1).


In the degenerate case η

G

(s) = constant (circular profile of radius h = R



with G at the centre) we find f

2

+ (h



− g)

2

= R



2

, g /f = 1/R

2

and for


the motion ˙s = constant. In the case k

0

h = 1, k



0

< 0 the coefficient of

˙s

2



is approximated by

1

2



(mh

2

+ I



G

)k

2



0

to

O(s



3

), and hence the fourth-order

approximation of the Lagrangian is

L(s, ˙s) =

1

2

mh



2

+ I


G

k

2



0

˙s

2



+

1

4!



mgk

0

s



4

,

and the energy integral



1

2

mh



2

+ I


G

k

2



0

˙s

2



+

1

4!



mg

|k

0



|s

4

= E



yields the solution in the form

A

s



(t)

0

ds



E

− B



2

s

4



= t,

A

2



=

1

2



mh

2

+ I



G

k

2



0

,

B



2

=

1



4!

mg

|k



0

|


168

The dynamics of discrete systems. Lagrangian formalism

4.14

if s(0) = 0, ˙s(0) =



E/A, from which we can compute the period

θ = 4A

(E/B


2

)

1/4



0

ds



E

− B


2

s

4



.

Apply these results to the following homogeneous systems: an arc of a circle,

of an ellipse, and of a cycloid; a half-disc; a disc with a regular circular, but

not concentric, hole; and the set bounded by an arc of a parabola and a

segment orthogonal to the axis.

Problem 2

A point particle (P, m) is constrained to move on the smooth paraboloid z =

c(x


2

+ y


2

), c > 0, under the action of gravity.

(i) Write down the Lagrangian.

(ii) Prove that the component L

z

of the angular momentum is a first integral



of the motion.

(iii) Find the value of L

z

for which the circle z = z



0

> 0 is a trajectory and find

the corresponding motion.

(iv) Discuss the stability of circular motions and study the linear perturbations

around them.

Solution


(i) The Lagrangian is

L =


1

2

m ˙



x

2

+ ˙



y

2

+ 4c



2

(x ˙


x + y ˙

y)

2



− mgc(x

2

+ y



2

).

It is convenient to express it in polar coordinates (r, ϕ):



L =

1

2



m ˙r

2

+ r



2

˙

ϕ



2

+ 4c


2

r

2



˙r

2

− mgcr



2

.

(ii) L



z

= x ˙


y

− y ˙x is a first integral because the quantities

˙

x

2



+ ˙

y

2



,

2(x ˙


x + y ˙

y) =


d

dt

r



2

,

x



2

+ y


2

= r


2

are invariant under the action of the group of rotations around the z-

axis, which is an admissible one-parameter group of symmetries for the

Lagrangian.

On the other hand, writing the Lagrange equations in polar coordinates, we

obtain:


(1 + 2c

2

r



2

r + 2gcr



− r ˙ϕ

2

= 0,



d

dt

(r



2

˙

ϕ) = 0.



4.14

The dynamics of discrete systems. Lagrangian formalism

169

The second equation expresses the conservation of L



z

= r


2

˙

ϕ. Hence the first



equation can be written as

(1 + 2c


2

r

2



) ¨

r + 2gcr


L

2



z

r

3



= 0.

(iii) From the last equation, imposing the condition that r

2

= z


0

/c, we find that

the required value of L

z

is



L

z



= z

0

2g



c

.

(iv) Let us first study the perturbations keeping the value L



z

= L


z

4



fixed.

Writing


r = r

0

+ ρ



r

0

=



z

0

c



,

1

r



3

1

r



3

0

1



− 3

ρ

r



0

,

the equation for first-order perturbations is



(1 + 2c

2

r



2

0

) ¨



ρ + 2gcρ + 3

L



z

2

r



4

0

ρ = 0.



Therefore the perturbations are harmonic oscillations with frequency

ω = (8gc)

1/2

(1 + 2c


2

r

2



0

)



1/2

.

Allowing also perturbations of L



z

= L


z

(1 + ) with



1, to first order we

find


(1 + 2c

2

r



2

0

) ¨



ρ + (8gc + 12gc )ρ = 0.

This equation naturally describes the same oscillations as before, but with

respect to the equilibrium orbit corresponding to the perturbed value of L

z

.



Problem 3

A homogeneous circle of mass M and radius R rolls without friction in a vertical

plane along a horizontal line. A rod of mass m and length

< 2R is constrained

in such a way that its ends can slide with no friction on the circle. The centre O

of the circle is attracted by a fixed point C, at a distance R from the horizontal

line, with an elastic force. The system is subject to gravity.

(i) Write down Lagrange’s equations.

(ii) Study the equilibrium configurations.

(iii) Study the small oscillations around the configuration of stable equilibrium.

4

After reading Chapter 10, prove that



L

z

is an integral independent of the Hamiltonian.



Therefore

L

z



and the total energy

E can be chosen independently.



170

The dynamics of discrete systems. Lagrangian formalism

4.14

Solution


(i) For the circle consider the angular coordinate ϕ which a radius forms with

the vertical, in such a way that ϕ = 0 if O = C. For the rod, take the

angular coordinate ψ identified by the angle between the vertical and the

normal to the rod. Denote by h =

R

2



2

/4 the distance between O and

the centre of mass G of the rod. The coordinates of O are (Rϕ, R), the

coordinates of G are

x

G

= Rϕ + h sin ψ,



y

G

= R



− h cos ψ.

The kinetic energy of the system is

T =

1

2



· 2MR

2

˙



ϕ

2

+



1

2

1



12

m

2



˙

ψ

2



+

1

2



m R

2

˙



ϕ

2

+ h



2

˙

ψ



2

+ 2Rh cos ψ ˙

ϕ ˙

ψ .


The potential energy is

V =


1

2

kR



2

ϕ

2



+ mg(R

− h cos ψ).

Note that the Hessian matrix of T is

H

T



=



(m + 2M )R

2

mRh cos ψ



mRh cos ψ

m

2



12

+ h


2

⎠ .



Verify that this matrix is positive definite (since (m + 2M )R

2

> 0, it is



enough to verify that det(H

T

) > 0). Lagrange’s equations are



(2M + m)R

2

¨



ϕ + mRh cos ψ ¨

ψ

− mRh sin ψ ˙ψ



2

+ kR


2

ϕ = 0,


mRh cos ψ ¨

ϕ +


R

2

12



+ h

2

sin ¨



ψ

− mRh sin ψ ˙ϕ ˙ψ + mgh sin ψ = 0.

(ii) It can be easily verified that the equilibrium equations are

ϕ = 0,


sin ψ = 0.

For ϕ = 0, ψ = 0 the Hessian matrix of V is

H

V

(0, 0) =



kR

2

0



0

mgh


(stable equilibrium), while for ϕ = 0, ψ = π

H

V



(0, 0) =

kR

2



0

0

−mgh



(unstable equilibrium).

4.14

The dynamics of discrete systems. Lagrangian formalism

171

(iii) The equations of motion linearised around ϕ = 0, ψ = 0 are



(2M + m)R



2

mRh


mRh

m

2



12

+ h


2



¨

ϕ

¨



ψ

+

kR



2

0

0



mgh

ϕ

ψ



= 0.

In the second term there appears a diagonal matrix. After writing the system

in the form

H

0



T

¨

x + H



0

V

x = 0,



it is convenient to proceed as in Section 4.10 (but interchanging the

procedures applied to the two matrices). Consider

(H

0

V



)

1/2


=

kR



0

0



mgh

and its inverse

(H

0

V



)

−1/2


=

1/



kR

0

0



1/

mgh



,

and define y = (H

0

V

)



1/2

x. Then the system is transformed to

(H

0

V



)

−1/2


H

0

T



(H

0

V



)

−1/2


¨

y + y = 0.

Now let S be the orthogonal transformation which diagonalises the matrix

C = (H


0

V

)



−1/2

H

0



T

(H

0



V

)

−1/2



and set y = SZ. The system is now transformed

to

λ



2

0

0



λ

1

¨



Z + Z = 0,

where λ


1

, λ


2

are the eigenvalues of the matrix C. The frequencies of the

normal modes are 1/

λ



1

, 1/


λ

2



.

We can solve the problem in general by considering

A =

a

11



a

12

a



12

a

22



in place of H

0

T



(where a

12

= 0), and



B =

γ

1



0

0

γ



2

instead of H

0

V

. The matrix C has the form



C =



a

11



γ

1

a



12

γ



1

γ

2



a

12



γ

1

γ



2

a

22



γ

2





172

The dynamics of discrete systems. Lagrangian formalism

4.14

and its eigenvalues are



λ

i

=



1

2



a



11

γ

1



+

a

22



γ

2

+ (



−1)

i

−1



a

11

γ



1

+

a



22

γ

2



2

− 4


det(A)

γ

1



γ

2

1/2





, i = 1, 2.

The orthonormal eigenvectors of C,

α

i

β



i

, i = 1, 2, can be found by solving

the systems (i = 1, 2)

a

11



γ

1

α



i

+

a



12

γ



1

γ

2



β

i

= λ



i

α

i



,

α

2



i

+ β


2

i

= 1.



Setting

µ

i



=

γ



1

γ

2



a

12

λ



i

a



11

γ

1



=

1

2a



12



ξa

22



1

ξ



a

11

+ (



−1)

i

−1



ξa

22

+



1

ξ

a



11

2

− 4detA



1/2



, i = 1, 2,

with ξ =

γ

1



2

, the eigenvectors are



1/

1 + µ


2

i

µ



i

/

1 + µ



2

i

. The orthogonal



matrix S diagonalising C is

S =




1

1 + µ



2

1

1



1 + µ

2

2



µ

1

1 + µ



2

1

µ



2

1 + µ


2

2





and the normal modes are

z = S


T

B

1/2



x =





γ

1

1 + µ



2

1

1/2



µ

1

γ



2

1 + µ


2

1

1/2



γ

1

1 + µ



2

2

1/2



µ

2

γ



2

1 + µ


2

2

1/2





x.



To complete the solution of the problem under consideration it is now

sufficient to substitute back.

Problem 4

A point particle (P

1

, m) moves along the circle



x

1

= R cos ϕ,



y

1

= R sin ϕ



4.14

The dynamics of discrete systems. Lagrangian formalism

173

in a horizontal plane. A second point (P



2

, m) is constrained on the curve

x

2

= R cos ψ,



y

2

= R sin ψ,



z

2

= h sin ψ.



The two points interact with an elastic force of constant k; the constraints are

smooth. Consider the following three cases:

(i) no gravity, P

1

fixed in the position ϕ = π/2;



(ii) no gravity, P

1

free to move on the circle;



(iii) non-zero gravity, P

1

free to move on the circle.



Then find what follows.

(a) For case (iii) write down the Lagrangian and Lagrange’s equations.

(b) Study the equilibrium in all cases.

(c) How can the fundamental frequencies around the stable equilibrium config-

uration be found?

Solution


(a) Since

|P

1



− P

2

|



2

= R


2

[2

− 2 cos(ϕ − ψ)] + h



2

sin


2

ψ, the potential energy in

case (iii) is

V (ϕ, ψ) =

1

2

kR



2

γ

2



sin

2

ψ



− 2 cos(ϕ − ψ) + mgh sin ψ,

with γ = h/R. For the kinetic energy we have

T =

1

2



mR

2

˙



ϕ

2

+ (1 + γ



2

cos ψ) ˙


ψ

2

.



It follows that the Lagrangian is given by

L =


1

2

R



2

˙

ϕ



2

+ (1 + γ


2

cos ψ) ˙


ψ

2



1

2

kR



2

γ

2



sin

2

ψ



− 2 cos(ϕ − ψ) − mgh sin ψ

and Lagrange’s equations are

mR

2

¨



ϕ + kR

2

sin(ϕ



− ψ) = 0,

mR

2



[(1 + γ

2

cos ψ) ¨



ψ

− γ


2

sin ψ ˙


ψ

2

]



+ kR

2

1



2

γ

2



sin 2ψ

− sin(ϕ − ψ) + mgh cos ψ = 0.

(b) Case (i) [g = 0, ϕ = π/2]

V =


1

2

kR



2

γ

2



sin

2

ψ



− 2 sin ψ ,

V = kR


2

2



sin ψ cos ψ

− cos ψ),

V

= kR


2

2



cos 2ψ + sin ψ).

174

The dynamics of discrete systems. Lagrangian formalism

4.14

The equilibrium corresponds to cos ψ = 0 and also to γ



2

sin ψ = 1, if γ > 1.

For ψ = π/2 we have V

= kR


2

(1

− γ



2

); thus we get a stable equilibrium

if γ < 1, and an unstable equilibrium if γ > 1. For ψ =

−π/2 we have

V

=

−kR



2

(1 + γ


2

); thus we get an unstable equilibrium. If γ > 1, let

ψ



= arcsin(1/γ



2

); then


for ψ = ψ

, V



= kR

2

γ



2

1



γ

2

> 0



⇒ stable equilibrium,

for ψ = π

− ψ



, as above.



Note that if γ = 1 we have ψ

= π



−ψ

= π/2, with V (π/2) = V



(π/2) = 0,

V

(IV)



(π/2) > 0, and hence stability follows (even if the oscillations are not

harmonic).

Case (ii) [g = 0]

V =


1

2

kR



2

γ

2



sin

2

ψ



− 2 cos(ϕ − ψ) ,

∂V

∂ϕ



= kR

2

sin(ϕ



− ψ),

∂V

∂ψ



= kR

2

1



2

γ

2



sin 2ψ

− sin(ϕ − ψ) ,

and therefore the equilibrium equations can be written as

sin(ϕ


− ψ) = 0, sin 2ψ = 0,

with solutions

(0, 0), (0, π), (π, 0), (π, π), (

±π/2, ±π/2), (±π/2, ∓π/2).

We compute the Hessian matrix of V as

H

V



= kR

2

cos(ϕ



− ψ)

− cos(ϕ − ψ)

− cos(ϕ − ψ) γ

2

cos 2ψ + cos(ϕ



− ψ)

.

Stability is only possible when ϕ = ψ, while all cases when ϕ



− ψ = ±π are

unstable. In summary:

(0, 0) stable,

(π, π) stable,

(

±π/2, ±π/2) ⇒ det(H



V

) < 0


⇒ unstable.

Case (iii)

∂V

∂ϕ

= kR



2

sin(ϕ


− ψ),

∂V

∂ψ



= kR

2

1



2

γ

2



sin 2ψ

− sin(ϕ − ψ) + mgh cos ψ.



4.14

The dynamics of discrete systems. Lagrangian formalism

175

The equilibrium equations can be written as



sin(ϕ

− ψ) = 0,

1

2

γ



2

sin 2ψ + α cos ψ = 0,

α =

mgh


kR

2

.



We again find the equations cos ψ = 0, sin(ϕ

− ψ) = 0, yielding the solutions

(

±π/2, ±π/2), (±π/2, ∓π/2).



In addition, if γ

2

> α, there are the solutions of



γ

2

sin ψ + α = 0.



Setting

χ = arcsin

α

γ

2



= arcsin

mg

kR



,

the corresponding equilibrium configurations are

(

−χ, −χ), (χ − π, −χ), (−χ, χ − π), (χ − π, χ − π).



The Hessian matrix of V is

H

V



= kR

2

cos(ϕ



− ψ)

− cos(ϕ − ψ)

− cos(ϕ − ψ) γ

2

cos 2ψ + cos(ϕ



− ψ) − α sin ψ

,

and det(H



V

) = (kR


2

)

2



cos(ϕ

− ψ)(γ


2

cos 2ψ


− α sin ψ). Stability is possible

only when ϕ = ψ. We examine these cases as follows.

(π/2, π/2): det(H

V

) < 0, and thus we get an unstable equilibrium.



(

−π/2, −π/2): det(H

V

) has the sign of



−γ

2

+ α and the second diagonal



element of H

V

is



−γ

2

+ 1 + α. It follows that for γ



2

< α there is stability,

and for γ

2

> α there is instability.



(

−χ, −χ): Note that cos(−2χ) = cos 2χ = 1 − 2 α/γ

2 2

. Hence det(H



V

) has


the sign of

γ

2



1

− 2


α

2

γ



4

+

α



2

γ

2



= γ

2



α

2

γ



2

;

this is positive if γ



2

> α, which is our assumption. In addition, (H

V

)

22



=

γ

2



− α

2



2

+ 1 > 0, and thus we get a stable equilibrium.

− π, χ − π): As above.



176

The dynamics of discrete systems. Lagrangian formalism

4.14

(c) We only need to note that the Hessian matrix of the kinetic energy



H

T

= mR



2

1

0



0

1 + γ


2

is diagonal. It follows that in all cases examined, the formulae for the fundamental

frequencies are as summarised in equations (4.153).

Problem 5

Consider the system of two point particles (P

1

, m



1

), (P


2

, m


2

) as represented in

Fig. 4.6.

Find the stable equilibrium configurations and the frequencies of the normal

modes.

Solution


Let k be the elastic constant; then the Lagrangian of the system is

L =


1

2

m



1

R

2



˙

ϕ

2



+

1

2



m

2

˙



ξ

2

+ m



1

gR cos ϕ


1

2



k (R sin ϕ

− ξ)


2

+ R


2

(2

− cos ϕ)



2

.

Dividing this expression by m



1

R

2



and setting

η =


ξ

R

,



2

1



=

g

R



,

2



2

=

k



m

1

,



µ =

m

2



m

1

,



this can be written as

L =


1

2

˙



ϕ

2

+



1

2

µ ˙



η

2

+



2

1



cos ϕ

1



2

2



2

(sin ϕ


− η)

2

+ (2



− cos ϕ)

2

.



The equilibrium equations are

2



1

sin ϕ +


2

2



[(sin ϕ

− η) cos ϕ + (2 − cos ϕ) sin ϕ] = 0,

sin ϕ

− η = 0,


yielding

η = sin ϕ = 0.

Hence we conclude that there exists a configuration of unstable equilibrium

(η = 0, ϕ = π) and one of stable equilibrium (η = 0, ϕ = 0).

The quadratic approximation of the Lagrangian around the latter is

L

2



=

1

2



˙

ϕ

2



+

1

2



µ ˙

η

2



1

2



2

1



ϕ

2



1

2



2

2



2

− 2ϕη + η

2

.

Therefore we identify the two matrices A and V :



A =

1

0



0

µ

,



V =

2



2

⎝2 +



1



2

2

1



1

1



⎠ .

4.14

The dynamics of discrete systems. Lagrangian formalism

177

O

R

R

P

1

m

1


Download 10.87 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling