2-misol. Hisoblang: .
Yechilishi: Integralni hisoblashni yuqoridagi bosqichlar asosida, ya`ni formulani qo`llash orqali bajaramiz:
3-misol. Integralni hisoblang:
Yechilishi: Aniq integralning 3- xossasiga asosan berilgan integralni ikki qismga ajratamiz va Nyuton –Leybnis formulasidan foydalanib, hisoblaymiz:
Mustaqil yechish uchun mashqlar.
№1. №7.
№2. №8.
№3. №9.
№4. №10.
№5. №11.
№6. №12.
O`rta qiymat haqidagi teorema
Teorema. Agar funksiya kesmada uzluksiz bo`lsa, u holda, shu kesmada shunday nuqta mavjud bo`ladiki, uning uchun
tenglik o`rinli bo`ladi.
Isboti: Faraz qilaylik, bo`lsin. U holda, funksiyaning berilgan kesmadagi eng katta qiymati va eng kichik qiymati bo`lsin, ya`ni
.
da (2) tengsizlikni integrallaymiz:
Bundan,
(3)ni ga hadma – had bo`lamiz:
.
Berilgan funksiya da uzluksiz bo`lganligi uchun qo`yi va yuqori chegara oralig`idagi (ya`ni [ , ]) istalgan qiymatni qabul qiladi. U holda, da shunday nuqta mavjud bo`ladiki, bo`lishini ta`minlaydi. Bu esa (1) formuladan iborat. Teorema isbot bo`ldi.
Xulosa
I n t e g r a l t u s h u n c h a s i matematik analizning asosiy tushunchalaridan biri bo’lib matematika, fizika, mexanika va boshqa fanlarning eng kuchli quroli hisoblanadi. Egri chiziqlar bilan chegaralangan yuzlarni, egri chiziq yoylari va uzunliklarini, hajmlarni, ishlarni, tezliklarni, yo’llarni, inersiya momentlarini va hokazolarni hisoblashga ishlarining hammasi integral hisoblashga keltiriladi.
Do'stlaringiz bilan baham: |