$A\Phi (t)+\int\limits {0} {t}{K(x,t-\tau )\Phi }(\tau )d\tau =H$
Download 68.55 Kb.
|
1 2
Bog'liqAiry equation
- Bu sahifa navigatsiya:
- Existence of solutions.
Lemma 2. Let ${{\tau }_{3}}(t),{{\tau }_{4}}(t)\in CVL(0,T)$. Then
$\underset{x\to a-0}{\mathop{\lim }}\,{{w}_{3}}(x,t)=\frac{1}{3}{{\tau }_{3}}(t)$, $\underset{x\to a+0}{\mathop{\lim }}\,{{w}_{3}}(x,t)=-\frac{2}{3}{{\tau }_{3}}(t)$, $\underset{x\to a+0}{\mathop{\lim }}\,{{w}_{4}}(x,t)=0$. Lemma 3. Let ${{\tau }_{5}}(x)\in C\left[ a,b \right]$.Then function ${{w}_{5}}(x,t)$ is the fundamental solution of equation (7) and $\underset{t\to 0}{\mathop{\lim }}\,D_{0t}^{\alpha -1}{{w}_{5}}(x,t)={{\tau }_{5}}(x)$. Lemma 4. The equation $\partial _{0t}^{\alpha }u(x,t)-\frac{{{\partial }^{3}}}{\partial {{x}^{3}}}u(x,t)=f(x,t)$ with initial condition $D_{0t}^{\alpha -1}u{{(x,t)}_{t=0}}=0$ has a solution in the form ${{w}_{6}}(x,t)=\int\limits_{0}^{t}{d\eta \int\limits_{a}^{b}{G_{\alpha }^{\frac{2\alpha }{3}}(x-\xi ,t-\eta )f(\xi ,\eta )}}d\xi $. Existence of solutions. Let us find solutions in the form ${{u}_{1}}(x,t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(x-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(x-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )}d\tau +$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(x-0,t-\tau ){{\gamma }_{1}}(\tau )}d\tau +{{F}_{1}}(x,t),$ ${{u}_{2}}(x,t)=\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(x-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(x-0,t-\tau ){{\rho }_{2}}(\tau )}d\tau +$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(x-0,t-\tau ){{\gamma }_{2}}(\tau )}d\tau +{{F}_{2}}(x,t),$ ${{u}_{3}}(x,t)=\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(x-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(x-0,t-\tau ){{\rho }_{3}}(\tau )}d\tau +$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(x-0,t-\tau ){{\gamma }_{3}}(\tau )}d\tau +{{F}_{3}}(x,t),$ where functions ${{\alpha }_{i}}(t),{{\gamma }_{i}}(t),{{\beta }_{i}}(t),{{\rho }_{i}}(t)$ $i=\overline{1,3}$ are unknown functions ${{\beta }_{2}}(t)={{\beta }_{3}}(t)={{\rho }_{1}}(t)=0$ and ${{F}_{i}}(x,t)=\int\limits_{{{B}_{i}}}{{{u}_{0i}}(\xi )D_{0t}^{\alpha -1}G_{{{\alpha }_{i}}}^{\frac{2{{\alpha }_{i}}}{3}}}(x-\xi ,t-0)d\xi +\int\limits_{0}^{t}{\int\limits_{{{B}_{i}}}{G_{{{\alpha }_{i}}}^{\frac{2{{\alpha }_{i}}}{3}}(x-\xi ,t-0){{f}_{i}}(\xi ,\tau )d\xi d\tau }}$. It follows from Lemma 4 and the results given in [19] that these functions are the solutions of equations (7) and they satisfy initial conditions (8). Taking into account condition (9),we have $\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau +}\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau +}{{F}_{1}}(0,t)=$ $={{a}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )d\tau +}{{a}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(0,t-\tau ){{\gamma }_{2}}(\tau )d\tau +}{{a}_{1}}\int\limits_{0}^{t}{V_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(0,t-\tau ){{\rho }_{2}}(\tau )d\tau +}{{a}_{1}}{{F}_{2}}(0,t)$, $\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau +}\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau +}{{F}_{1}}(0,t)=$ $={{a}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )d\tau +}{{a}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(0,t-\tau ){{\gamma }_{3}}(\tau )d\tau +}{{a}_{2}}\int\limits_{0}^{t}{V_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(0,t-\tau ){{\rho }_{3}}(\tau )d\tau +}{{a}_{2}}{{F}_{3}}(0,t)$. Furthermore $\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau +}\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{\frac{\phi (-\frac{{{\alpha }_{1}}}{3},\frac{2{{\alpha }_{1}}}{3};0)}{3{{(t-\tau )}^{1-\frac{2{{\alpha }_{1}}}{3}}}}{{\gamma }_{1}}(\tau )d\tau +}{{F}_{1}}(0,t)=$ $={{a}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )d\tau +}{{a}_{1}}\int\limits_{0}^{t}{\frac{\phi (-\frac{{{\alpha }_{2}}}{3},\frac{2{{\alpha }_{2}}}{3};0)}{3{{(t-\tau )}^{1-\frac{2{{\alpha }_{2}}}{3}}}}{{\gamma }_{2}}(\tau )d\tau +}$ $+\operatorname{Im}\left[ {{a}_{1}}\int\limits_{0}^{t}{\frac{{{e}^{\frac{2\pi i}{3}}}\phi (-\frac{{{\alpha }_{2}}}{3},\frac{2{{\alpha }_{2}}}{3};0)}{3{{(t-\tau )}^{1-\frac{2{{\alpha }_{2}}}{3}}}}{{\rho }_{2}}(\tau )d\tau } \right]+{{a}_{1}}{{F}_{2}}(0,t)$. So, we have $\frac{1}{3}{{a}_{1}}{{\gamma }_{2}}(t)+\frac{\sqrt{3}}{6}{{a}_{1}}{{\rho }_{2}}(t)=D_{0t}^{\frac{2{{\alpha }_{2}}}{3}}(\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau -}{{a}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )d\tau )+}D_{0t}^{\frac{2{{\alpha }_{2}}}{3}}({{F}_{1}}(0,t)-{{F}_{2}}(0,t))$ $\frac{1}{3}{{a}_{2}}{{\gamma }_{3}}(t)+\frac{\sqrt{3}}{6}{{a}_{2}}{{\rho }_{3}}(t)=D_{0t}^{\frac{2{{\alpha }_{3}}}{3}}(\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau -}{{a}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{3}}}{3}}(-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )d\tau )+}D_{0t}^{\frac{2{{\alpha }_{3}}}{3}}({{F}_{1}}(0,t)-{{F}_{3}}(0,t))$ From above relation we obtain $\frac{1}{3}{{a}_{1}}{{\gamma }_{2}}(t)+\frac{\sqrt{3}}{6}{{a}_{1}}{{\rho }_{2}}(t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{2}})}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{2}})}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{2}})}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau -}{{a}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{0}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )d\tau +}D_{0t}^{\frac{2{{\alpha }_{2}}}{3}}({{F}_{1}}(0,t)-{{F}_{2}}(0,t))$ $\frac{1}{3}{{a}_{2}}{{\gamma }_{3}}(t)+\frac{\sqrt{3}}{6}{{a}_{2}}{{\rho }_{3}}(t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{3}})}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau }+\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{3}})}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )d\tau }+$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2({{\alpha }_{1}}-{{\alpha }_{3}})}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau -}{{a}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{0}(-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )d\tau +}D_{0t}^{\frac{2{{\alpha }_{3}}}{3}}({{F}_{1}}(0,t)-{{F}_{3}}(0,t))$ In a similar manner, we obtain from condition (10) that $\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )}d\tau +{{F}_{1x}}(0,t)=$ $={{b}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{{{\alpha }_{2}}}{3}}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )}d\tau +{{b}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{\frac{{{\alpha }_{2}}}{3}}(0,t-\tau ){{\gamma }_{2}}(\tau )}d\tau +{{b}_{1}}\int\limits_{0}^{t}{V_{{{\alpha }_{2}}}^{\frac{{{\alpha }_{2}}}{3}}(0,t-\tau ){{\rho }_{2}}(\tau )}d\tau +{{b}_{1}}{{F}_{2x}}(0,t),$ $\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )}d\tau +{{F}_{1x}}(0,t)=$ $={{b}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{{{\alpha }_{3}}}{3}}(-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )}d\tau +{{b}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{\frac{{{\alpha }_{3}}}{3}}(0,t-\tau ){{\gamma }_{3}}(\tau )}d\tau +{{b}_{2}}\int\limits_{0}^{t}{V_{{{\alpha }_{3}}}^{\frac{{{\alpha }_{3}}}{3}}(0,t-\tau ){{\rho }_{3}}(\tau )}d\tau +{{b}_{2}}{{F}_{3x}}(0,t)$ From above relation we obtain $\frac{{{b}_{1}}}{3}{{\gamma }_{2}}(t)-\frac{{{b}_{1}}\sqrt{3}}{6}{{\rho }_{2}}(t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{2}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{2}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )}d\tau +$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{2}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )}d\tau -{{b}_{1}}\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{0}(-{{L}_{2}},t-\tau ){{\alpha }_{2}}(\tau )}d\tau +D_{0t}^{\frac{{{\alpha }_{2}}}{3}}{{F}_{1x}}(0,t)-D_{0t}^{\frac{{{\alpha }_{2}}}{3}}{{b}_{1}}{{F}_{2x}}(0,t)$ $\frac{{{b}_{2}}}{3}{{\gamma }_{3}}(t)-\frac{{{b}_{2}}\sqrt{3}}{6}{{\rho }_{3}}(t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{3}}}{3}}(-{{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )}d\tau +\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{3}}}{3}}(-{{L}_{1}},t-\tau ){{\beta }_{1}}(\tau )}d\tau +$ $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{{{\alpha }_{1}}-{{\alpha }_{3}}}{3}}(0,t-\tau ){{\gamma }_{1}}(\tau )}d\tau -{{b}_{2}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{0}(-{{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )}d\tau +D_{0t}^{\frac{{{\alpha }_{3}}}{3}}{{F}_{1x}}(0,t)-D_{0t}^{\frac{{{\alpha }_{3}}}{3}}{{b}_{1}}{{F}_{3x}}(0,t)$ Taking into account condition (11) and using Lemmas given above, we have $\frac{1}{3}{{\gamma }_{1}}(t)+\frac{1}{3{{a}_{1}}}{{\gamma }_{2}}(t)+\frac{1}{3{{a}_{2}}}{{\gamma }_{3}}(t)=\int\limits_{0}^{t}{\frac{1}{{{a}_{1}}}\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\partial }^{2}}}{{{x}^{2}}}G_{{{\alpha }_{2}}}^{\frac{2{{\alpha }_{2}}}{3}}(x-{{L}_{2}},t-\tau )}{{\alpha }_{2}}(\tau )d\tau +$ $+\int\limits_{0}^{t}{\frac{1}{{{a}_{2}}}\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\partial }^{2}}}{{{x}^{2}}}G_{{{\alpha }_{3}}}^{\frac{2{{\alpha }_{3}}}{3}}(x-{{L}_{3}},t-\tau )}{{\alpha }_{3}}(\tau )d\tau -\int\limits_{0}^{t}{\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\partial }^{2}}}{{{x}^{2}}}G_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(x-{{L}_{1}},t-\tau )}{{\alpha }_{1}}(\tau )d\tau -$ $-\int\limits_{0}^{t}{\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\partial }^{2}}}{{{x}^{2}}}V_{{{\alpha }_{1}}}^{\frac{2{{\alpha }_{1}}}{3}}(x-{{L}_{1}},t-\tau )}{{\beta }_{1}}(\tau )d\tau +\frac{1}{{{a}_{1}}}{{F}_{2xx}}+\frac{1}{{{a}_{3}}}{{F}_{3xx}}-{{F}_{1xx}}$ Using conditions (12), we have $\frac{1}{3}{{\alpha }_{1}}(t)+\frac{\sqrt{3}}{6}{{\beta }_{1}}(t)=-\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{0}({{L}_{1}},t-\tau ){{\gamma }_{1}}(\tau )d\tau +D_{0t}^{\frac{2{{\alpha }_{1}}}{3}}({{\varphi }_{1}}(t)-{{F}_{1}}({{L}_{1}},t))}$ $\frac{1}{3}{{\alpha }_{2}}(t)=-\int\limits_{0}^{t}{G_{{{\alpha }_{2}}}^{0}({{L}_{2}},t-\tau ){{\gamma }_{2}}(\tau )d\tau -\int\limits_{0}^{t}{V_{{{\alpha }_{2}}}^{0}({{L}_{2}},t-\tau )}{{\rho }_{2}}(\tau )d\tau +D_{0t}^{\frac{2{{\alpha }_{2}}}{3}}({{\varphi }_{2}}(t)-{{F}_{2}}({{L}_{2}},t))}$ $\frac{1}{3}{{\alpha }_{3}}(t)=-\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{0}({{L}_{3}},t-\tau ){{\gamma }_{3}}(\tau )d\tau -\int\limits_{0}^{t}{V_{{{\alpha }_{3}}}^{0}({{L}_{3}},t-\tau )}{{\rho }_{3}}(\tau )d\tau +D_{0t}^{\frac{2{{\alpha }_{3}}}{3}}({{\varphi }_{3}}(t)-{{F}_{3}}({{L}_{3}},t))}$ $\frac{1}{3}{{\alpha }_{1}}(t)-\frac{\sqrt{3}}{6}{{\beta }_{1}}(t)=-\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{0}({{L}_{1}},t-\tau ){{\gamma }_{1}}(\tau )d\tau +D_{0t}^{\frac{{{\alpha }_{1}}}{3}}({{\psi }_{1}}(t)-{{F}_{1x}}({{L}_{1}},t))}$ We obtain the following system of integral equations (20)-(24) with respect to unknowns $\Phi (t)$ \[\Alpha \Phi (t)+\int\limits_{0}^{t}{\Kappa (t-\tau )}\Phi (\tau )d\tau =H\] . Where $\Phi (t)$ is the unknown functions, $A$ is the $9\times 9$ matrix, $K$ is the matrix of potentials. Using above system, the matrices can be written in the form $\frac{{{a}_{1}}}{3}$ $-\frac{\sqrt{3}}{6}{{b}_{2}}$ $\Phi (t)={{({{\alpha }_{1}}(t),{{\alpha }_{2}}(t),{{\alpha }_{3}}(t),{{\beta }_{1}}(t),{{\gamma }_{1}}(t),{{\gamma }_{2}}(t),{{\gamma }_{3}}(t),{{\rho }_{2}}(t),{{\rho }_{3}}(t))}^{T}}$ $\det A\ne 0$ $\sum\limits_{i=1}^{3}{\int\limits_{{{B}_{i}}}{{{u}_{i}}{{u}_{ixxx}}dx=\sum\limits_{i=1}^{3}{{{u}_{i}}{{u}_{ixx}}{{|}_{{{B}_{i}}}}-\frac{1}{2}\sum\limits_{i=1}^{3}{u_{i}^{2}{{|}_{{{B}_{i}}}}=}}}}$${{u}_{1}}(0,t){{u}_{1xx}}(0,t)-{{u}_{1}}(-{{L}_{1}},t){{u}_{1xx}}(-{{L}_{1}},t)+{{u}_{2}}({{L}_{2}},t){{u}_{2xx}}({{L}_{2}},t)-{{u}_{2}}(0,t){{u}_{2xx}}(0,t)+$ $+{{u}_{3}}({{L}_{3}},t){{u}_{3xx}}({{L}_{3}},t)-{{u}_{3}}(0,t){{u}_{3xx}}(0,t)-\frac{1}{2}({{u}_{1x}}(0,t)-{{u}_{2x}}(0,t)-{{u}_{2x}}(0,t))$ = = = $\int\limits_{0}^{t}{\partial _{0\tau }^{\alpha }f(\tau )}d\tau =\frac{1}{\Gamma (1-\alpha )}\int\limits_{0}^{t}{\int\limits_{0}^{\tau }{\frac{\frac{\partial }{\partial s}f(s)}{{{(\tau -s)}^{\alpha }}}dsd\tau =}}\frac{1}{\Gamma (1-\alpha )}\int\limits_{0}^{t}{ds}\int\limits_{s}^{t}{\frac{\frac{\partial }{\partial s}f(s)}{{{(\tau -s)}^{\alpha }}}d\tau =}$ $=\frac{1}{\Gamma (1-\alpha )}\int\limits_{0}^{t}{\frac{\partial }{\partial s}f(s)\cdot \frac{{{(\tau -s)}^{1-\alpha }}}{1-\alpha }}|_{\tau =s}^{\tau =t}ds=\frac{1}{(1-\alpha )\Gamma (1-\alpha )}\int\limits_{0}^{t}{\frac{\frac{\partial }{\partial s}f(s}{{{(t-\tau )}^{\alpha -1}}}ds=}$ $=\frac{1}{\Gamma (2-\alpha )}f(s)\cdot {{(t-s)}^{1-\alpha }}|_{s=0}^{s=t}+\frac{1}{\Gamma (1-\alpha )}\int\limits_{0}^{t}{\frac{f(s)}{{{(t-s)}^{\alpha }}}ds=}$ $=D_{0t}^{\alpha -1}f(t)-\frac{{{t}^{1-\alpha }}}{\Gamma (2-\alpha )}f(0)$. $\int\limits_{a}^{b}{\int\limits_{0}^{t}{u(x,\tau )f(x,\tau )d\tau d}}x=\int\limits_{0}^{t}{\int\limits_{a}^{b}{\frac{u(x,\tau )}{{{(t-\tau )}^{\frac{\alpha }{2}}}}}}{{(t-\tau )}^{\frac{\alpha }{2}}}f(x,\tau )dxd\tau \le $ $\le \varepsilon \int\limits_{0}^{t}{\frac{d\tau }{{{(t-\tau )}^{\alpha }}}}\int\limits_{a}^{b}{{{u}^{2}}(x,\tau )dx+\frac{1}{4\varepsilon }}\int\limits_{0}^{t}{{{(t-\tau )}^{\alpha }}d\tau }\int\limits_{a}^{b}{{{f}^{2}}(x,\tau )dx}=$ $=\varepsilon \Gamma (1-\alpha )D_{0t}^{\alpha -1}\int\limits_{a}^{b}{{{u}^{2}}(x,t)dx}+\frac{1}{4\varepsilon }D_{0t}^{\alpha -1}\int\limits_{a}^{b}{{{f}^{2}}(x,t)dx}$ $F(x,y,{{D}^{\alpha }}u,......)=0$ $\frac{\sqrt{3}}{{{3}^{8}}}{{a}_{2}}{{a}_{3}}b_{2}^{2}b_{3}^{2}$ $\frac{1}{3}{{a}_{3}}{{\gamma }_{3}}(t)=\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2}{3}({{\alpha }_{1}}-{{\alpha }_{3}})}({{L}_{1}},t-\tau ){{\alpha }_{1}}(\tau )d\tau +}\int\limits_{0}^{t}{V_{{{\alpha }_{1}}}^{\frac{2}{3}({{\alpha }_{1}}-{{\alpha }_{3}})}(0,t-\tau ){{\rho }_{1}}(\tau )d\tau +}$. $+\int\limits_{0}^{t}{G_{{{\alpha }_{1}}}^{\frac{2}{3}({{\alpha }_{1}}-{{\alpha }_{3}})}(0,t-\tau ){{\gamma }_{1}}(\tau )d\tau -{{a}_{3}}}\int\limits_{0}^{t}{G_{{{\alpha }_{3}}}^{0}({{L}_{3}},t-\tau ){{\alpha }_{3}}(\tau )d\tau -}$. $D_{0t}^{\frac{{{\alpha }_{1}}}{3}}({{F}_{1x}}(0,t)-{{b}_{2}}{{F}_{2x}}(0,t)-{{b}_{3}}{{F}_{3x}}(0,t))$ Download 68.55 Kb. Do'stlaringiz bilan baham: |
1 2
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling