и нелинейном закон упругости (4.7) с гранич
ными (4.2), (4.3) и нулевыми начальными усло
виями.
Данная задача допускает два частных случая
о
продольных колебаниях цилиндрической
оболочки и круглого стержня. Ниже приведем
эти частные случаи.
Б) Продольные колебания круговой цилин
дрической оболочки.
В случае чисто продольных колебаний об о
лочки будем считать, что радиальные переме
щения точек оболочки тождественно равны ну
лю, т.е.
и г
=
0.
Тогда объемная деформации появляется
только за счет продольного перемещения, т.е.
6 0 = 1 Т ^ .
( 4 8 )
3 d z
Интенсивность деформации сдвига опреде
ляется как
v
0 =■
Т ,
и2
2 С Т , 4 2
,
I
I
.
(4.9)
9 д d z Т
3 д dr 1
Уравнения движения (4.1) упрощаются и
принимают вид:
d a
д а
а
д2п
- + - — +— — = р-
dr
dz
r
dt2
( r < r < Г
2
).
(4.10)
Граничные условия следую т из (4.2) и (4.3):
a rz ( ri,z ,t ) = f i ° ( z , t ) ,
(i = Ъ 2 ). (4 1 1 )
Начальные условия принимаются равными
r
+
2
2
2
2
X
121
П роблем ы архит ект уры и ст роит ельст ва
2019, № 4
нулю.
Функция удлинения %(s0) по- прежнему
определяется по формуле (4.6), которая с уче
том выражения для S0 - (4.8) принимает вид
Do'stlaringiz bilan baham: |