Austrian Journal of Technical and
PS:PDA-1,Palvuaniyazova Dilbar Alaniyazovna. Literature
Download 1.6 Mb. Pdf ko'rish
|
Scopus, Web of ScienceAustriya-11-12,2019 (2) - копия
- Bu sahifa navigatsiya:
- Section 3. Environmental and health Eshli Goldberg, prof. of a University of a Sydney.Australiya. E-mail: Eshli@ com.
PS:PDA-1,Palvuaniyazova
Dilbar Alaniyazovna. Literature. 1.Shiro Okata. Environments problems of a world. Tokyo. 2017. 2.Matherials UNIDO by Environments situation now a days.NY.2018. Section 3. Environmental and health Eshli Goldberg, prof. of a University of a Sydney.Australiya. E-mail: Eshli@ com. MECHANISMS OF TOXICITY EXPOSURE Abstract: The article is proves that the order to make the evaluation fully comprehensive, it was decided to compare also material and fire performance as well as attempt a life cycle assessment of a reference product containing halogen characteristics. The tests on the fire behaviour of materials with different flame retardants revealed that halogen free flame retardants produce less smoke and toxic fire emissions to be participants in the news process. Key words: toxicit, global problem, equipment manufacturers. The environmental behaviour of flame retardants has been studied since the 1990s. Mainly brominated flame retardants were found in many environmental compartments and organisms including humans, and some individual substances were found to have toxicproperties. Therefore, alternatives have been demanded by authorities, NGOs and equipment manufacturers. The EU-funded collaborative research project ENFIRO (EU research project FP7: 226563, concluded in 2012) started out from the assumption that not enough environmental and health data were known of alternatives to the established brominated flame retardants. In order to make the evaluation fully comprehensive, it was decided to compare also material and fire performance as well as attempt a life cycle assessment of a reference product containing halogen free versus brominated flame retardants. About a dozen halogen free flame retardants were studied representing a large variety of applications, from engineering plastics, printed circuit boards, encapsulants to textile and intumescent coatings. A large group of the studied flame retardants were found to have a good environmental and health profile: ammonium polyphosphate (APP), Aluminium diethyl phosphinate (Alpi), aluminium hydroxide(ATH), magnesium hydroxide (MDH), melamine polyphosphate (MPP), dihydrooxaphosphaphenanthrene (DOPO), zinc stannate (ZS) and zinc hydroxstannate (ZHS). Overall, they were found to have a much lower tendency to bioaccumulate in fatty tissue than the studied brominated flame retardants. The tests on the fire behaviour of materials with different flame retardants revealed that halogen free flame retardants produce less smoke and toxic fire emissions, with the exception of the aryl phosphates RDP and BDP in styrenic polymers. The leachingexperiments showed that the nature of the polymer is a dominating factor and that the leaching behaviour of halogen free retardant that has been used in electronics, wire and cable insulation, textiles, automobiles and 14 and brominated flame retardants is comparable. The more porous or “hydrophilic” a polymers is the more flame retardants can be released. However, moulded plates which represent real world plastic products showed much lower leaching levels than extruded polymer granules. The impact assessment studies reconfirmed that the improper waste and recycling treatment of electronic products with brominated flame retardants can produce dioxins which is not the case with halogen free alternatives. Furthermore, the United States Environmental Protection Agency (US-EPA) has been carrying out a series of projects related to the environmental assessment of alternative flame retardants, the “design for environment” projects on flame retardants for printed wiring boards and alternatives to decabromo diphenylethers and hexabromocyclododecane (HBCD). In 2009, the U.S. National Oceanic and Atmospheric Administration (NOAA) released a report on polybrominated diphenyl ethers(PBDEs) and found that, in contrast to earlier reports, they were found throughout the U.S. coastal zone. This nationwide survey found that New York's Hudson Raritan Estuary had the highest overall concentrations of PBDEs, both in sediments and shellfish. Individual sites with the highest PBDE measurements were found in shellfish taken from Anaheim Bay, California, and four sites in the Hudson Raritan Estuary. Watersheds that include the Southern California Bight, Puget Sound, the central and eastern Gulf of Mexico off the coast of Tampa and St. Petersburg, in Florida, and the waters of Lake Michigan near Chicago and Gary, Indiana, also were found to have high PBDE concentrations. The earliest flame retardants, polychlorinated biphenyls (PCBs), were banned in the U.S. in 1977 when it was discovered that they were toxic. Industries used brominated flame retardants instead, but these are now receiving closer scrutiny. In 2004 and 2008 the EU banned several types of polybrominated diphenyl ethers (PBDEs). Negotiations between the EPA and the two U.S. producers of DecaBDE a flame of the out airplanes, and other applications), Albemarle Corporation and Chemtura Corporation, and the largest U.S. importer, ICL Industrial Products, Inc., resulted in commitments by these companies to phase out decaBDE for most uses in the United States by December 31, 2012, and to end all uses by the end of 2013. The state of California has listed the flame retardant chemical chlorinated Tris (tris(1,3-dichloro-2-propyl) phosphate or TDCPP) as a chemical known to cause cancer. In December 2012, the California nonprofit Center for Environmental Health filed notices of intent to sue several leading retailers and producers of baby products for violating California law for failing to label products containing this cancer- causing flame retardant. While the demand for brominated and chlorinated flame retardants in North America and Western Europe is declining, it is rising in all other regions. There is a potential association between the exposure to the Phosphorus Flame Retardants (PFR) in residential indoor dust and the development of allergies, asthma and dermatitis. A study was conducted in 2014 by Araki, A. et al. in Japan to assess this relationship.They found a significant association between the Tris (2-chloro-iso- propyl) phosphate (TCIPP) and atopic dermatitis with an odds ratio of 2.43. They also found that the Tributyl phosphate was associated with the development of allergic rhinitis and asthma with an odds ratio of 2.55 & 2.85 respectively. Nearly all Americans tested have trace levels of flame retardants in their body. Recent research links some of this exposure to dust on television sets, which may have been generated from the heating of the flame retardants in the TV. Careless disposal of TVs and other appliances such as microwaves or old computers may greatly increase the amount of environmental contamination. A recent study conducted by Harley Download 1.6 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling