Aylanish figuralari
Download 449.5 Kb.
|
Aylanish figuralari
- Bu sahifa navigatsiya:
- Y echilishi
- Javob
AB = 2AD = 2demak, konus sirti Sk = 9π. Bundan, = . Javob: . 14 – masala. Silindrning yasovchisiga tik bo`lgan kesimning yuzi Q ga, o`q kesimining yuzi esa S ga teng. Bu silindrning to`la sirtini va hajmini toping. Y echilishi: Masala shartiga ko`ra, SABCD= S, Sasos = Q Bundan quyidagi tengliklarni yozish mumkin: S = AB · AD = 2AO · AD, Q = π · AO2. Bizga ma`lumki, silindr to`la sirti St.c. = Syon +2Sasos . Yuqori dagi tengliklardan AO= , AD = S/2 . Bulardan, St.c = 2π · AO · AD + 2π · AO2 = πS + 2Q. Ma`lumki silindr hajmi V = π · AO2 · AD ekanligidan, V = St.c = πS + 2Q. Javob: V == . 15 – masala. Konus yon sirtining yuzi asosining yuzidan ikki marta katta. Uning o`q kesimining yuzi Q ga teng. Konusning hajmini toping. Yechilishi: Masala shartiga ko`ra Syon = 2 · Sasoc , \
SABC = Q. Ma`lumki Syon = πrℓ= π · AO · AC, Sasoc = πr2 = π · AO2, SABC = AO · OC. formulalar yordamida hisoblanadi. Yuqo- ridagilarni e`tiborga olsak, ℓ= 2r ya`ni AC = 2AO, shu bilan birga Q = AO · = AO2 · . ekanligini topish mumkin. Bundan AO = Konus hajmi V = π · · · = . Adabiyot: 1. Hakimov A. 2. Xolikov Q.S 3. Ungarov B.X. 4. Abjalilov S.X. 5. www.ziyonet.uz 6. www.NUR.uz Download 449.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling