Berdaq nomidagi qoraqalpoq davlat universiteti fizika fakulteti elektr texnikasi kafedrasi


Fazalar farki ga teng bulsin, u xolda (5) tenglama kuyidagi kurinishga keladi. rasm.bunda natijaviy xarakat tugri chizik buylab sodir buluvchi garmonik tebranishdan iborat


Download 15.76 Kb.
bet3/5
Sana14.11.2023
Hajmi15.76 Kb.
#1772088
1   2   3   4   5
Bog'liq
18

2. Fazalar farki ga teng bulsin, u xolda (5) tenglama kuyidagi kurinishga keladi. rasm.bunda natijaviy xarakat tugri chizik buylab sodir buluvchi garmonik tebranishdan iborat.

2. Fazalar farki ga teng bulsin, u xolda (5) tenglama kuyidagi kurinishga keladi. rasm.bunda natijaviy xarakat tugri chizik buylab sodir buluvchi garmonik tebranishdan iborat.

formula kuyidagicha ya’ni koordinata uklariga keltirilgan ellipsdan iborat buladi. Agar

bulsa,(1) tenglama

rasm. Agar (=-((( bulganda tebranish tenglamasi kuyidagicha buladi: Sunuvchi tebranishlar. Garmonik tebranishlar tenglamasini chikarayetganda biztebranuvchi nuktasiga kvazielastik kuch ta’sir kiladi deb xi-soblagan edik.

Xar kanday real tebranuvchi sistemada doim karshilik kuch-lari mavjud bulib, ularning ta’siri sistema energiyasini ka-mayishiga olib keladi. Agar kamaygan energiya tashki kuchlarningishi xisobiga tuldirilib turilmasa tebranishlar sunadi. Karshilik kuchi Fk=-r((-rx( (1) r - chikarish koeffitsiyenti. Tebranayetgan jism uchun Nyuton ikkinchi konunining tenglamasini yezamiz. .(2) uni kuyidagi kurinishga keltiramizbu yerda kuyidagi belgilardan foydalandik: (4)

  • Xar kanday real tebranuvchi sistemada doim karshilik kuch-lari mavjud bulib, ularning ta’siri sistema energiyasini ka-mayishiga olib keladi. Agar kamaygan energiya tashki kuchlarningishi xisobiga tuldirilib turilmasa tebranishlar sunadi. Karshilik kuchi Fk=-r((-rx( (1) r - chikarish koeffitsiyenti. Tebranayetgan jism uchun Nyuton ikkinchi konunining tenglamasini yezamiz. .(2) uni kuyidagi kurinishga keltiramizbu yerda kuyidagi belgilardan foydalandik: (4)

(0 - xususiy tebranish chastotasi. a(t) vakt funksiyasi (5) ni t vakt buyicha differensiallab x' va x" larni topamiz. bu ifodalarni (2) ga kuyib, uni murakkab bulmagan uzgartirishlar utkazsak, kuyidagi munosabatni topamiz. cos((t+() va sin((t+() larning oldidagi koeffitsiyentlar0ga teng bulishi mumkin (6) (7) . (6) tenglamani kuyidagicha yezish mumkin. (Pastda keltirilgan) bundan Sunggi tenglamani integrallasak, buni potensiallab A(t) uchun kuyidagi ifodani topamiz. (8) A=-(A va A'=(2A ekanligini osongina kurish mumkin. (2A-2(2A(-(2)A=0 bu munosabatni 0 dan farkli A kupaytiruvchiga kiskar-tirsak, (2 =-(2 ni (9) topamiz. > (2 bulsa, xakikiy son buladi.

  • (0 - xususiy tebranish chastotasi. a(t) vakt funksiyasi (5) ni t vakt buyicha differensiallab x' va x" larni topamiz. bu ifodalarni (2) ga kuyib, uni murakkab bulmagan uzgartirishlar utkazsak, kuyidagi munosabatni topamiz. cos((t+() va sin((t+() larning oldidagi koeffitsiyentlar0ga teng bulishi mumkin (6) (7) . (6) tenglamani kuyidagicha yezish mumkin. (Pastda keltirilgan) bundan Sunggi tenglamani integrallasak, buni potensiallab A(t) uchun kuyidagi ifodani topamiz. (8) A=-(A va A'=(2A ekanligini osongina kurish mumkin. (2A-2(2A(-(2)A=0 bu munosabatni 0 dan farkli A kupaytiruvchiga kiskar-tirsak, (2 =-(2 ni (9) topamiz. > (2 bulsa, xakikiy son buladi.

Download 15.76 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling