Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Americans. Washington, DC: The Association.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learn- ing. Educational Researcher, 18(1), 32-42. Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press. Bush, G. H. W. (1991). America 2000: An education strategy. Washington, DC: U. S. Department of Education. Fey, J. T. (1989). Technology and mathematics education: A survey of recent develop- ments and important problems. Educational Studies in Mathematics, 20, 237-272. Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3-38). New York: Macmillan. Linn, M. C. (1986). Establishing a research base for science education: Challenges, trends, and recommendations. Berkeley, CA: Lawrence Hall of Science. National Advisory Committee on Mathematics Education (NACOME). (1975). Overview and analysis of school mathematics K-12. Washington, DC: Conference Board of the Mathematical Sciences. National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: The Council. National Council of Teachers of Mathematics (NCTM). (1991). Professional standards for teaching mathematics, Reston, VA: The Council. National Research Council (NRC). (1990). Reshaping school mathematics: A framework for curriculum. Washington, DC: National Academy Press. Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher, 18(1), 16-25. Pollak, H. O. (1982). The mathematical sciences curriculum K-12: What is still fundamen- tal and what is not. Report from the Conference Board of the Mathematical Sciences. National Science Board Commission on Precollege Education in Mathematics, Science, and Technology. Educating Americans for the 21st Century (Source Materials), 1-17. Rogoff, B., & Lave, J. (Eds.). (1984). Everyday cognition: Its development in social con- text. Cambridge, MA: Harvard University Press. Schoenfeld, A. (1992). Learning to think mathematically: Problem-solving, metacognition, and sense-making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York: Macmillan. Steen, L. A. (Ed.). (1990). On the shoulders of giants: New approaches to numeracy. Washington, DC: National Academy Press. ECLECTIC APPROACHES TO ELEMENTARIZATION Nonetheless, while the creative process of forming an engaging mathe- matics curriculum cannot be reduced to algorithmic application of scientific principles, it seems clear that the creative process is immeasurably enhanced by consideration of insights from analysis of alternative ways to develop mathematical ideas, from studies of conditions that facilitate human learn- ing, and from studies of alternative classroom instructional strategies. Even the implementation of new curricula can be eased by thoughtful considera- tion of the contextual factors that have been shown to influence acceptance of other innovations. DIDACTICAL ENGINEERING AS A FRAMEWORK FOR THE CONCEPTION OF TEACHING PRODUCTS Michèle Artigue Paris / Reims 1. INTRODUCTION In French research on didactics of mathematics, the issue of preparing mathematics for students, which is the topic of this chapter, is located at a crossroads between two not independent but nonetheless distinct theoretical fields: the theory of didactical transposition, developed since the beginning of the 1980s by Y. Chevallard (Chevallard, 1991, 1992), and the theory of Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling