Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Visible Language, 16(3), 281-288.
Sneed, J. (1971). The logical structure of mathematical physics. Dordrecht, Netherlands: Reidel. Steiner, H. G. (1987). Philosophical and epistemological aspects of mathematics and their interaction with theory and practice in mathematics education. For the Learning of Mathematics, 7(1), 7-13. Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in mathematical education (pp. 194-209). Cambridge: Cambridge University Press. Tiles, M. (1991). Mathematics and the image of reason. London: Routledge. Tymoczko, T. (Ed.). (1986). New directions in the philosophy of mathematics. Boston, MA: Birkhauser. Walkerdine, V. (1988). The mastery of reason. London: Routledge. Walther, G. (1984). Mathematical activity in an educational context. In R. Morris (Ed.), Studies in mathematics education 3 (pp. 69-88). Paris: UNESCO. Wang, H. (1974). From mathematics to philosophy. London: Routledge. Wittgenstein, L. (1953). Philosophical investigation. Oxford: Blackwell. Wittgenstein, L. (1979). Remarks on the foundations of mathematics (rev. ed.). Cambridge, MA: MIT Press. 349 THE HUMAN SUBJECT IN MATHEMATICS EDUCATION AND IN THE HISTORY OF MATHEMATICS Michael Otte and Falk Seeger Bielefeld Problems of the theory of mathematics education are fundamentally philo- sophical problems. Since Kant, the philosophical as well as the scientific debate on knowing has been divided between thorough-going relativism, all knowledge held to be just a representation of the subject’s particular per- spective on reality on the one side, and the claim that there are self-authenti- cating experiences or methods that guarantee direct knowledge of reality. In order to transform this dichotomy into a productive "paradox" (knowledge is relative and objective at the same time), we have to explore the "objectiv- ity of the subjective." This exploration will essentially have to take an evo- lutionary or historical view. The present paper tries to break ground for the undertaking of such an exploration of the historical objectivity of the sub- ject. It can be understood as an attempt to sketch some very general outlines of the relation between the history of mathematics and mathematics educa- tion. We take it to be a highly important goal of mathematics education that the knowledge it helps students develop is not only of a factual kind, being distant from the subject, but that it is personal in the sense that it is also knowledge about the subject’s self. It is a truism that not only is mathemat- ics a historical phenomenon but also that what we understand as the subject is the result of history as reflected in the self-image of the scientific disci- plines. What we would like to do is the following: We start with a brief review of the reasons to employ history in mathematics teaching. The conclusion of this review is that the benefit of historical understanding originates in the perspectives of metaknowledge and metacognition it necessitates. We argue that metaknowledge and metacognition are part and parcel of a relational conception of knowledge – as opposed to a substantialist conception. If knowledge is seen to reside in the relation between things, it follows that the relation to the human subject – metaknowledge – is involved. We then dis- cuss how metaknowledge under the influence of literacy and print can be understood as a variation in perspective. With the spread of print, we find a growing focus on the individual as the source of knowledge. We then try to R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling