Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Didactics of Mathematics as a Scientific Discipline, 351-365.
© 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. 1. INTRODUCTION give a picture of the role of individualism as a historical type of reasoning in mathematics as well as in school. Looking for reasons for this individualist version of epistemology, we step back to gain a view of the influence of society at large on certain notions of science, knowledge, and school learn- ing. We find that the positivist perspective cannot take into account the clash between substantialist and functionalist perspectives on knowing and meaning. Mathematical formalism cannot be treated in a formal way, as did positivism. We conclude that the complementarity of substantialist and functionalist aspects of knowing and meaning requires a historical perspec- tive – giving a picture of the subject and the self that goes beyond individu- alism as it highlights its historical origins and becoming. 2. REASONS TO EMPLOY A HISTORICAL PERSPECTIVE IN THE MATHEMATICS CLASSROOM History has traditionally been used as a source to stimulate students' motiva- tion for doing mathematics, and we would like to shortly review some of the arguments in the following part. It seems rather obvious that such an em- ployment of history is unsatisfactory, as the student very quickly learns that the real stuff comes only after the "storytelling" is over. The idea of linking the studies of mathematics with those of the history of that subject was quite popular in Germany during the 19th century (Gebhardt, 1912). This idea has been revitalized by, above all, Otto Toeplitz whose posthumously published book, Die Entwicklung der Infinitesimal- rechnung. Eine Einführung nach der genetischen Methode (1949), has been widely appreciated although it was not successful in the stricter sense. Toeplitz’s endeavors are to be understood in relation to the many activities of German mathematicians, like Weyl, Speiser, Dehn, Siegel, and others, who tried to place mathematical production into a broader cultural context. Since 1945, Bourbakism has overthrown these attempts, and only during the last 15 years has a certain change of attitude taken place. Nevertheless, the only text specifically devoted to the introduction of historical ideas into the mathematical classroom at school level is the collection of sources compiled by Popp (Popp, 1968). At the university level, the situation is a little more favorable. But still there is only one text devoted to the introduction into a mathematical discipline via historical argumentation (Scharlau & Opolka, 1980). Our own activities started in 1979 when the Volkswagen Foundation financed our proposal (Otte, 1977) enabling us to organize an international as well as interdisciplinary meeting on Epistemological and social problems of the sciences in the early 19th century (Jahnke & Otte, 1981). Often historical themes are introduced into the classroom in order to counterbalance the technical treatment of mathematical ideas. Mathematics is approached then by asking for its connections to other areas of human cultural activity. Positivist-formalistic conceptions of mathematics, on the contrary, start from the specificity of mathematics in comparison to the 352 HUMAN SUBJECT IN HISTORY other sciences and in contrast to other fields of human experience. It seems obvious that this notion of positivism may well function as a stumbling block in the process of making mathematics meaningful in the classroom just because it emphasizes the unconnectedness of the mathematical experi- ence to other fields of experience. This notion of the specificity of mathe- matics in the spirit of positivism is still rather typical for the use of history in the mathematics classroom quoted above. Accordingly, the critique of the positivist-formalist doctrine will form one major intention of the present pa- per. The specificity of mathematics is not to be seen in any particularity of method or content but rather in the fact that science in general is a child of the social division of labor. From this results the formal character of math- ematics and the abstract image of science. Mathematics according to such an understanding is hypothetico-deductive reasoning. The formal character of mathematics, historically, is connected closely to an epistemological insight that is essential for modernity, that is, the idea of "relational thinking." According to this notion, the content of theoretical concepts does not refer to things but to relations between things (see Cassirer, 1953). The essence of scientific thinking in general consists, as Max Born once said, in the discovery that relations can be controlled as well as communicated, whereas phenomena or things cannot. This holds also with respect to data that seem to speak for themselves by communicating their meaning. For example, the information that 7,000 people have been killed through traffic accidents in a certain country during a certain period of time takes on a fundamentally different meaning if it is supplemented with the additional information that the respective figures have ranged be- tween 10,000 and 15,000 during preceding periods compared to the infor- mation that these figures had always been smaller than 2,000. There is another motivation to include the history of mathematics into mathematics teaching. The claim of an absolute objectivity of knowledge cannot be justified, because there is not only one correct interpretation or just one possible meaning of a piece of knowledge. Theoretical terms are valuable as means of cognitive activity just because they represent idealiza- tions that cannot be dissolved exhaustively into one particular possible in- terpretation or application. Formal mathematical knowledge as well as ev- eryday procedural knowledge is silent beyond the representation given in the sense of Wittgenstein’s dictum: "What can be shown cannot be said" (1974, 4.1212). A representation, accordingly, hides that which it does not express. In contrast to a representation, a theoretical concept per se ex- presses nothing and says very many things. Each successful application of a concept shows it in a different light; each of its representations leads to a different conclusion or to a different activity. The power of a concept in the "relational" meaning thus cannot be seen in its mapping of reality but in the potential relations it opens up. The "potentiality" of theoretical concepts is MICHAEL OTTE AND FALK SEEGER 353 also gained in the process of historically reconstructing the development of a mathematical concept or a mathematical idea. History provides us with the insight that there is not one mathematics, and this insight might encourage and strengthen the learner with respect to her or his own personality and ap- proach to knowledge. Thus, the meaning of "relational" also applies to the relation of knowledge to the human subject, as is very well put in Max Born’s statement quoted above. Mathematics education has to take into account that there is no knowl- edge without metaknowledge, that one cannot learn a theoretical concept without learning something about concepts, in order to understand what kind of entities those are. This metaknowledge can, however, be developed by means of historical studies. 3. MEDIATEDNESS, METAKNOWLEDGE, THE INDIVIDUAL, AND LITERACY Education aims at organizing processes of learning. Such processes always undergo a dual determination, as learning is always at the same time met- alearning. Even the mechanical learning of rules, like learning to execute an algorithm, is accompanied by a second-order learning, by metalearning (Bateson, 1983). The increase in mechanical learning, which represents a phenomenon of metalearning, and the individual variation show that learning and knowl- edge are always reflexive, or that the genesis of knowledge is to be under- stood first with regard to its relationship to the world of objects, and second, with regard to the subject's inner world, the relationship to the self. Difference and connection between learning and metalearning thus have to be discussed against the background of the distinction between subject and object. This distinction is absolutely dependent on communication. We communicate with the subject about the object, and not vice versa. Cognition and communication very much depend on the means and media. Both changed deeply with the invention of the phonetic alphabet in antiq- uity and with the invention of the printing press during the 15th century. J. Goody, among others, has investigated the impact of literacy on human thought. He writes: 354 HUMAN SUBJECT IN HISTORY . . . it is not accidental that major steps in the development of what we now call "science" followed the introduction of major changes in the channels of communication in Babylonia (writing), Ancient Greece (the alphabet), and in Western Europe (printing). (1977, p. 51) The specific proposition is that writing, and more specific alphabetic literacy, made it possible to scrutinise discourse in a different kind of way by giving oral communication a semi-permanent form; this scrutinity increased the potentiality for cumulative knowledge, especially knowledge of an abstract kind, because it changed the nature of communication beyond face-to-face contact as well as the system for the storage of information . . . . No longer did the problem of memory storage dominate man's intellectual life; the human mind was freed to study static In historical terms, the role of printing was predominantly that it fundamen- tally changed the relation between people and knowledge and thereby the concept of knowledge in society as well as the individual’s position (cf. Glück, 1987). Mathematics played a greater role than other kinds of knowl- edge in those processes, because it helped to develop new technologies as well as to organize and systematize the knowledge and experience of the practitioner. Descartes’ algebraization of geometry, for instance, was pri- marily intended to bring new order into the geometrical knowledge of Greek antiquity as well as that of the artisans and mechanics of his time. Cognitively, the distinction between subject and object and communica- tion between subjects has the advantage of permitting a change of perspec- tive on the object. All representation of objectivity is based on a variation of perspective. It yields the advantage of a double check of reasoning, and the still greater advantage of developing logic and methodology. This double check or this possibility of an alternative perspective is greatly enhanced by literacy, in particular, since the invention of the printing press. Printing made it possible to compare statements exactly. Different readers could discuss a specific argument that was located precisely within identical copies. Text became autonomous from interpretation by an established au- thority. Contradictions and connections between arguments became clearly visible. Before the printing press, to study medicine meant to study Galen, to engage in physics or geography was to read Ptolemy, and to learn math- ematics meant to study Euclid’s Elements. Texts were only considered truthful and trustworthy during the Middle Ages if the name of the author was indicated as well as those of the compilator and the commentator. Statements on the order of "Hippocrates said . . ." or "Pliny tells us . . ." were markers of a proven discourse. Only afterwards did it become possible to surpass ancient authority and to check conflicting or incomplete verdicts rendered by their teaching against the great book of Nature or against own experience. Discourse was no longer able to justify its claims by referring to the supporting authority of another, and it was constrained increasingly to become self-authorized. Enlightenment assumptions and revolutionary ex- perience coalesced with printing technology. With the availability of identi- cal texts, not only the content of an argument but its style and particular ex- pression became relevant too. And this fostered individualism (see, also, Havelock, 1986; Ong, 1982, for other accounts of the rise of individualism in relation to print and literacy). 4. IDENTITY IN MATHEMATICS The formation of any theory begins with certain principles of individuation that serve to establish the ontology of the theory, that is, the claims for the existence of the objects about which the theory speaks or wants to speak. In MICHAEL OTTE AND FALK SEEGER 355 "text" (rather then be limited by participation in the dynamic "utterance"). (1977, p. 37) HUMAN SUBJECT IN HISTORY more or less close analogy, any society may be characterized by specifying the principles and social mechanisms of personal individualization. In mathematics, we are familiar with two types of identity principle, which we should like to characterize with the names of Leibniz and Grassmann respectively. The first type goes back to Leibniz’ principle of indiscernibility, or his principium identitatis indiscernibilium, which actu- ally dates back to Aristotle. It consists in the thesis that there are no two substances that resemble each other entirely but only differ quantitatively, because then their "complete concepts," that means, the concept that characterizes the substance completely, would coincide. The ultimate goal of classical science, which is, in general, to be accomplished only by God through an infinite analysis, lies in the determination of the individual substances. The goal of modern science, on the contrary, is to be seen in appropriate generalizations that orient technical action and prediction. Modern science assumes that reality is general rather than specific, and, therefore, that knowledge is related toward an abstract formal order rather than being knowledge of a specific, substantive order (a formal order allows more freedom to the individual than a substantive order). According to Leibniz’s principle, there is no distinction without a motive, without a reason, as Leibniz stresses in his correspondence with Clarke (Alexander, 1956, p. 36). The second constructivist principle of individua- tion in mathematics is based on precisely the opposite view, that is, on a distinction without motive and reason. "It is," writes Grassmann, "irrelevant in what respect one element differs from another, for it is specified simply as being different, without assigning a real content to the difference. Our science shares this notion of element with combinatorics" (Grassmann, 1844/1969, p. 47; our translation, M.O./F.S.). This kind of individuation is, first of all, a process by which a certain perspective and style of reasoning is introduced that guides our cognitive activities. As distinct from the substantialist principle of identity, the problem here is to be understood as a functionalist principle of identity. Two objects are equal if they are functionally equivalent in a certain way specified by the- ory. This principle has been much emphasized in AI research (cf., e.g., Bundy, 1983, p. 42). In order to establish equality in the context of an ax- iomatic theory, we would have to single out those functions and predicates that make up the substitution axioms that distinguish equality from other equivalence relations, those n-ary functions f or predicates p that are com- patible with the equality relation. Leibniz’s theory of identity derives from the traditional Aristotelian the- ory of substances. Substances are the subjects of predication. They are in this sense the prerequisite of properties and relations, and they cannot, as modern analytical philosophy believes, be reduced to bundles of qualities. Otherweise all knowledge would be analytic and loose its connection with reality. A equals B or A = B means that A and B are appearances of the same 356 MICHAEL OTTE AND FALK SEEGER substance. In Fregian terminology, this is stated by saying that A and B represent different intensions of the same extension or that they are representations with a shared referent but different meanings. The other, Grassmanian view interprets "A is B" in terms of the idea of shared qualities of different things. In modern mathematics, as in modern analytical philosophy, it is not the substances that matter but the relations. The objects of a theory are equivalence classes of unidentified elements, which are constituted according to a functional principle of operativity. As the objects of a theory become identical with their descriptions, we get applications of knowledge as a problem in their own right. Theories become realities sui generis. A good example, which illustrates the two identity principles, is the equation A = B provided by economic exchange. Every commodity contains use value and exchange value. Empirical abstraction starts with use value as the notion that constitutes the individual goods and finds out about the ex- change value only a posteriori on the market place. Theoretical abstraction considers exchange value as the essentialy quantitative representation of an independent substance, namely, economic value as such. Economic activity in a capitalist society makes exchange value its real end and the use value a means to this. In school, too, we are familiar with these two types of individuation: the substantialist and the functionalist. They characterize the transition from arithmetic to algebra. For children, numbers at first have a shape and a life of their own. 1/2 is a privileged fraction, and it is easier to calculate with than the other rational numbers. Substantialist reasoning inquires into the properties, the essence, the meaning. Functionalist reasoning treats all those things as identical that function in the same way within a certain context. Thus, if we assume that numbers are determined above all by the fact that they lend themselves to calculations according to certain axiomatically preestablished principles, then these numbers can be designated by general symbols x, y, . . . , and so forth. In algebra, calculating is thus done with in- determinate or "general" numbers, that is, with variables that designate numbers only with regard to the fact that they can be treated arithmetically. A second example is the following: Students, as a rule, have difficulties with equations, because they have interpreted and learned the equality sign in the sense of "yields." This "input-output" interpretation represents a "di- rect" understanding of the equation. The concept of equation has not yet been transformed into an object of mathematical reflection; a relational or functional understanding has not yet been achieved. 5. IDENTITY AND THE SOCIETAL SUBJECT Societies also are based on principles of individuation and are determined according to which principles of identity or individualization they en- counter. In a way parallel to the above distinctions, an organic and a func- 357 HUMAN SUBJECT IN HISTORY tionalist principle of identity exist in society as well. On the one hand, peo- ple are determined by their individual personalities, and, on the other hand, by the functions they assume in the larger society characterized by division of labor. Every social individual is a contradiction in itself insofar as it has both an organic-biological and personal existence and, on the other side, is integrated into society by the roles it fulfills. The exemplification of the two conceptions of an equation A = B in terms of economic value of commodi- ties is a direct expression of different conceptions of society. Aristotle regarded society as a substance, and this view persisted up to the 15th or 16th century. But society is a rather unusual substance, in that hu- mans have a capacity to think and choose the ends they pursue. There is un- deniably a tension between the view that society is a substance and the view that humans are free agents. A single metaphor for society, which prevailed from antiquity to the beginning of capitalism, was that of an organism, whereas, for modern capitalist society, another analogy came to seem more appropriate: the analogy with a set or an aggregate. The analogy of the set has been pervasive in the thought produced in capitalist society as the anal- ogy of the organism was in precapitalist society. In traditional precapitalist society, there did not exist a contradiction or tension with respect to the definition of the individual. In precapitalist formations, the forms of social relations that correspond to these are personal dependence. In capitalist so- ciety, there is personal independence based on objective dependence. We may, in summary, note that the complexity of our reasoning and of our per- sonality in general increases with the complexity and formality of our social relations. Individualism is a product of social history, not of nature. It is also a product of social division of labor that leads to conflicts between the world of science and the everyday world. This problem has been investigated with reference to the problems of sci- ence education (see, e.g., DiSessa, 1982) and it has been described in a rather general setting by the British philosopher Gilbert Ryle in his book Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling