Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet147/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   143   144   145   146   147   148   149   150   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

Didactics of Mathematics as a Scientific Discipline, 379-397.
© 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands.


REPRESENTATION AND AUTHENTIC EXPERIENCE
mental structures, however, are ultimately the result of physical activity on
physical material. In the Piagetian tradition and following from Saussure,
this distinction is sometimes characterized as a distinction between the sig-
nified (internal) and the signifier (external). These two sources of structure
differ in another important aspect – the physical is observable while the
mental is hypothetical, to be inferred from observations and accompanying
theory (in an interactional style not unlike that being posited here).
The interactions are usually cyclical and sometimes very rapid. What one
“sees” triggers, or, perhaps more accurately (Grossberg, 1980; Kosslyn &
Koenig, 1992), resonates with, existing mental structures (I mean to include
both perceptual and cognitive structures), which alters what one can see in
the physical material with which one is dealing. One may see more detail, or
perhaps a larger pattern, which, in turn, resonates with additional mental
structures, and the process continues. This interaction may or may not
involve the actual production of additional physical structure (writing,
drawing, etc.). Different mental structures can be called into play by, what
appears to an independent observer, exactly the same physical material. For
example, the following array of disks in Figure 1 might be thought of as a
representation of 3 · 5 + 4 (3 rows of 5 per row, etc.) or as a representation
of 4 · 4 + 3 (4 columns of 4 per column, etc.), or any of a large set of
possibilities, including nonmathematical ones, of course.
1.2 Background: Inert Versus Interactive Media
In the physical medium, there are two possibilities when one acts: (a) the
“marks”one produces merely remain, maintaining their physical and hence
perceptual permanence in the medium, as when one writes on paper with a
pencil; or (b) the physical material responds in some way with representa-
tional elements that the “writer” did not directly produce, as when one hits
the “=” sign on a calculator and some computational result appears. A phys-
ical medium that does not produce a reaction will be referred to as an inert
medium, and one that has the capacity for physical response to inputs will be
referred to as an interactive medium. (This distinction is discussed more
fully in Kaput, 1992, in press b.) If the above in Figure 1 were an array of
counting chips on a table, one could rearrange it, but, upon the rearrange-
ment action, the chips would remain unchanged – they constitute a manipu-
lable, but, nonetheless, an inert medium. In an interactive computer envi-
380


ronment, the rearrangement of the screen array might effect a change in a
linked numerical representation, or one might effect a change in the array by
changing the numerical representation. The innovation inherent in interac-
tive media is potentially profound in its impact on mathematics and mathe-
matics education, as I shall attempt to explore below.
1.3 Background: Horizontal and Vertical Dimensions
of Representation
Referential relationships between the mental and the physical usually take
place in yet another referential context, when one set of physical materials is
assumed to stand in some referential relationship to another. For example,
suppose one has a situation from which one has isolated some particular as-
pect, say the motion of an oscillating spring, and one is attempting to de-
scribe that motion mathematically, that is, to create a mathematical model of
the motion, for example, a function expressed in one or more representation
systems. This situation might alternatively only be available to the person
through a text description. These representational contexts are shown in
Figure 2 in the horizontal dimension. Note that, for an individual, the refer-
ential relationship exists at the mental level in the form of integrated knowl-
edge structures. From a social perspective, it might be the case that a group
may take as shared or given that a referential relationship exists, although it
would nonetheless involve mental operations on the part of the members of
the group.
Other types of referential relationships might exist, as between two different
representations of what mathematically mature adults take as a shared con-
cept, say “the” concept of number and its constituent units. For example,
suppose one has been given a formal decomposition of the number 19 writ-
ten as 3(5) + 4, and one is asked to represent that decomposition as an array
of counting chips. In this case, two different kinds of knowledge are in-
volved and need to be integrated, and, usually, one is less complete or stable
than the other. One is knowledge of physical groupings, arrays, and how to
produce and recognize them. The other is knowledge of such formal de-
compositions, their syntax, and so on. The usual short-term aim of this sort
JAMES J. KAPUT
381


of activity is to use the stable and elaborated physical knowledge to build
knowledge of such formal decompositions. The longer-term aim is to build
a rich, flexible, and elaborated understanding of numbers as collections of
units of various sizes, in which different unit structures of particular num-
bers can be produced or recognized across many different contexts. This
might be thought of as building fluent traversal of such diagrams as in Fig-
ure 2. Below I shall examine the horizontal dimension as it can be realized
in interactive media, in which a physical link exists between the physical el-
ements appearing in Figure 2.
1.4 Background: Action Systems Versus Display Systems
A diagram may be used to represent some aspect of some entity or situation,
a skeletal anatomy, for example. It is intended to be observed. The same can
be said of rhetorical algebra, which acted as a shorthand for natural lan-
guage. It is entirely another matter to act physically in a system of symbols
according to a prescribed or prescribable syntax, as in algebra as we now
know it. These differences highlight an important distinction: between static
display systems and operative active systems. As already noted, there are
mental operations involved in any representational relationship, so the key
difference with action systems is in the physical nature of the actions of the
user on the representation, changing the physical state of the representation
– which might take virtually any form, any state change initiated by the
user. The active/display distinction reflects a slow and deep historical evolu-
tion. The earliest operative algebra did not appear until algebra began to
emerge as an operative system in the 16th and 17th centuries. This devel-
opment enabled new ways of thinking “characterized by the use of an oper-
ant symbolism, that is, a symbolism that not only abbreviates words, but
represents the workings of the combinatory operations, or, in other words, a
symbolism with which one operates” (Mahoney, 1980, p. 142). Bochner
emphasizes the enormous historical import of this development:
It brought about momentous innovations which gradually wrought a changeover
from the inertness of traditional syllogistic schemata of Greek mathematics to the
mobility of symbols and functions and mathematical relations. These symbols and
function
s
and relations have penetrated into many areas of systematic thinking,
much more than sometimes realized, and they have become the syllables of the
language of science. (Bochner, 1966, pp. 185-186)
Later Bochner goes on to say
. . . that various types of "equalities,", "equivalences," "congruences," "homeo-
morphisms," etc. between objects of mathematics must be discerned, and strictly
adhered to. However this is not enough. In mathematics there is the second re-
quirement that one must know how to "operate" with mathematical objects, that
is, to produce new objects out of given ones. Plato knew philosophically about
the first requirement for mathematics, but not at all about the second. And Greek
mathematics itself never developed the technical side of the second requirement,
and this was its undoing. (Bochner, 1966, p. 313)
382
REPRESENTATION AND AUTHENTIC EXPERIENCE


JAMES J. KAPUT
Leibniz' great achievement in the evolution of calculus can be characterized
in the same terms – as the development of a system of symbols and opera-
tions on them that represented the transformations relating tangents and ar-
eas, rates and accumulations, and so on that constitute the conceptual heart
of calculus. One can perform operations on symbols that outrun our ability
to execute the conceptual operations that they represent; a major leap for-
ward, not merely in mathematics, but for western civilization.
The new availability of interactive and representationally plastic media
makes possible a wide variety of operative action representation systems,
including operative versions of previously depictive systems, such as coor-
dinate graphs, that can now be manipulated as if they were physical objects.
Thus the move to operative symbolism that led to the scientific revolution
becomes newly available to enhance the intellectual power of all manner of
representation systems.
2. OLD AND NEW REPRESENTATIONAL STRATEGIES FOR
ATTACKING THE ISLAND PROBLEM
2.1 Technology and the Island Problem:
The Isolation of Formal Mathematics
Early uses of computer technology, as much as 40 years ago, were as a
medium in which the traditional symbol systems of mathematics, numeric
and algebraic, could be instantiated to yield enhanced actions. In the 1970s,
as graphical display power of computers improved, formal graphing became
common, unidirectionally linking algebraically defined relations with coor-
dinate graphs. By the end of the 1980s, they became bidirectional, support-
ing the ability to act directly on graphical objects with the algebraic de-
scription of the result “following along” (Confrey, 1992; Schwartz &
Yerushalmy, 1990; Yerushalmy, 1991). These linking systems were tightly
constrained by an underlying algebraic constraint – with a few marginal ex-
ceptions, most linking activities required relations to be defined as closed-
form algebraic rules. For a fuller history of technology in mathematics edu-
cation, see Kaput (1992). Thus the representational uses of technology in
mathematics education have been centered on facilitating either actions
within traditional representation systems or linkages among them, even
linkages connecting actions as well as objects. In the terms of Figure 3, they
have been primarily used to assist activity and movement on the island, not
to connect with the mainland of real human experience.
There are deep constraints at work in educational methods based on
exclusive use of traditional formal representation systems. In particular,
one’s activity tends to be restricted to those mathematical relationships that
are representable in closed algebraic form – because the computer and
calculator systems require this as a starting point for virtually all their
internal computations (this is even true for curve-fitting activities).
383


REPRESENTATION AND AUTHENTIC EXPERIENCE
But, to quote the mathematician Thomas Tucker, “Are all functions
encountered in real life given by closed algebraic formulas? Are any?”
(1988, p. 16). And here may be the biggest barrier to successful connections
between formal mathematics and authentic experience. However, many
functions that arise in daily life can be represented graphically without
regard to their irregularity and algebraic intractability – for example, today’s
temperature as a function of time, your school bus’s velocity as a function
of time as you rode to school this morning, and so forth. I shall discuss
overcoming the algebra constraint below, particularly in the context of
modeling.
2.2 Traditional Strategies for Dealing With the Island Problem
Support of traditional representations certainly has use in linking real expe-
rience to formal mathematics, but this is primarily by allowing traditional
modeling methods to be used with the computationally messier situations
that occur when one removes the artificial academic constraints intended to
make computations easy. More “realistic” applications become accessible,
and they need not be held hostage to students’ limited computational com-
petence (Fey, 1989). In addition, at the higher grade levels, quantitative re-
lationships are increasingly built up initially from situations through the use
of numerical tables, graphs, and other less stringently formal means before
the writing of algebraic equations. However, the means of connecting real
experience with formal mathematics remain indirect, more like round trips
by boat rather than traversal of a bridge.
We can picture the general strategies for making connections as in Figure
4, which shows two types of strategies, one, the traditional (left to right), in-
volves shaping rich nonmathematical knowledge into more mathematical
form by appropriately structuring experience; and the other involves shap-
ing mathematical knowledge into less formal mathematical forms by creat-
ing pedagogical notations that behave more “naturally” in terms of knowl-
384


JAMES J. KAPUT
385
edge and actions developed in ordinary life, for example, traditional ma-
nipulatives. The goal of each is to increase the overlap and integration of
knowledge structures as indicated in Figure 4.I shall deal with the second
strategy in the next section.
The structuring of experience is the essence of education of any kind
(indeed, recall the etymology of “instruct”). In mathematics, we begin by
structuring physical action, as with counting items differentiated in physical
experience. But later, we structure experience with notational objects whose
properties and relationships are defined mathematically and are mediated
only indirectly by their physical properties (mainly shape and location,
which implies order and grouping). Competence in the use of these notation
systems is built upon mental structures and operations that embody the
mathematics and, again, relate only indirectly to the perceptual features of
the systems. Much student difficulty can be ascribed to attempts to base
their performance on the rather subtle physical features of the systems in the
absence of the needed conceptual structures.
2.3. Inherited Strategies and Conventions of Traditional Notations
Mathematical notation evolved in the hands of an intellectual elite primarily
to serve the conceptual and communicative purposes of knowledge produc-
ers, without regard to the needs of the wider population to whom we now at-
tempt to teach it. Surely due to its long-term success in the hands of the
elite, formal notation has been treated historically as an untouchable given
of education, in terms of its historically received detail and as a target of in-
struction. It is generally believed that “you don’t really know it unless you
can express it formally.” The medium in which notations evolved was static
and inert, leading to a premium on spatial economy and implicit syntax. As
put by that master of notation design, Gottfried Leibniz, “In signs one


REPRESENTATION AND AUTHENTIC EXPERIENCE
observes an advantage in discovery which is greatest when they express the
exact nature of a thing briefly, and, as it were, picture it; then indeed the
labor of thought is wonderfully diminished” (cited in Cajori, 1929b, p. 184).
He was referring to the expression of a mathematical concept rather than the
depiction of a physical entity. Leibniz’ criterion for brevity is reflected in
another widely used strategy, the use of a single symbol to stand for a com-
plex construct or a multiplicity of some kind. This strategy appears all about
us: When we use the symbol “5” to stand for five instances of something,
including five abstract marks, as the “V” in Roman numerals; it is especially
powerful when iterated and used in combination with spatial ordering, as in
our standard Hindu-Arabic number system; it is also used when we use, say,
the symbol 
to stand for the category of all groups and homomorphisms,
an extremely complex mathematical object.
A third broad strategy in traditional notation is to use characters whose
physical identity is independent of that to which they refer – the notation,
such as algebraic notation, is intended to be of universal applicability. This
universality strategy is behind all nonpictographic and nonphonetic alpha-
bets (Hockett, 1960) as well as virtually all mathematical notations, despite
the fact that one can often trace some iconic roots of a notation, for exam-
ple, Robert Record’s “=” or the “and” root of “+” (“&”) (Cajori, 1929a, b).
A fourth strategy, almost invisible because it is part of virtually all visu-
ally-based notations, is perceptual constancy. Something written or drawn in
a stable medium does not need effort to be “held in mind.” This greatly re-
lieves short-term memory load and is in strong contrast to spoken language.
It also provides “objects” that can stand for any mathematical conception,
which, in turn, can assist in objectifying that conception (Harel & Kaput,
1992). A fifth strategy is quite subtle. Many formal notations smuggle in
physical and visual metaphors, such as the limit notations in calculus, all of
which use arrows to exploit motion metaphors to carry the cognitions that
the formal theory disacknowledges (Kaput, 1979). Thus traditional notations
actually embody some of the right-to-left strategy depicted in Figure 4, but
in a tacit way.
There are myriad other tacit strategies and conventions that are deeply
intertwined in all mathematical activity: for example, the uses of lower case
letters in certain contexts and upper case letters in others; the use of differ-
ent versions of the same character (as when one says “the group G in the
category ); or the re-use of notations taken from a particular context, for
example, addition on the integers, reals, or even complex numbers in a more
abstract context, as in the standard description of an abstract Abelian group.
I do not have the space here to catalog these strategies, but must note that
they are almost never addressed explicitly in instruction – we act as the fish
might, never discussing wetness. (A notable exception is Pimm, 1987, e.g.,
pp. 137-139.) But without them, mathematics as we know it would be im-
possible. It is this author’s view that mathematics learning would be greatly
386


JAMES J. KAPUT
enhanced by explicit and systematic attention to notational strategies and
conventions. Some of the deepest systematicity and power of the subject is
expressed in these very tacit ways.
2.4 Notational Strategies for Dealing With the Island Problem:
Traditional Manipulatives
Modifying notations or creating new notations that engage the naturally oc-
curring knowledge and ways of knowing that result from normal human ac-
tivity and development is also a deliberate strategy to move students toward
understanding of formalisms. Over the years, the most significant uses of
this strategy arose in the context of manipulatives, especially the highly
structured manipulatives of structuralists such as Dienes (1973). Dienes'
multibase blocks, for example, constitute an alternative to the standard no-
tation system. It renders the quantitative value of its symbols
(configurations of blocks), and actions on those symbols, more explicit (as
the literal size of the configurations). It also makes equivalence of symbols
more explicit, in terms of equal quantitative value (size). As a symbol sys-
tem, it stands as a concrete alternative to the formal expanded version of the
placeholder system, but is frought with subtlety and shortcomings, some of
which are addressed in Kaput, (in press b).
2.5 Examples of Newer Notational Innovations
More subtle examples of notation modification include such strategies as
enabling students to act on traditional mathematical notations in more natu-
ral ways, as when in a computer environment, for example, one uses a
pointing device and graphical interface to act directly on coordinate graphs
by sliding, bending, reflecting, and so forth (as with Function Probe, Con-
frey, 1992). This is a subtle exploitation of the rich knowledge based in
kinesthetic experience to act on mathematical notations, and hence to effect
mental operations on mathematical objects, that is, functions. Another ex-
ample is the direct manipulation of algebraic objects used in Theorist
(1991), a symbol manipulation and graphing environment, which allows one
to perform substitutions by “sliding and dropping” that which is to be
substituted directly into the expression, or to manipulate terms in an equa-
tion as if they were physical objects, and so forth. Yet another example, re-
flecting the dynamic, interactive properties of the computer medium, is of-
fered by CABRI Geometry (Laborde, 1992), the Geometer’s Sketchpad
(1992), and the Super-Supposer (1993). In each of these programs, the user
can construct a figure via actions that are analogous to the traditional Eu-
clidian drawing actions, and then perform physical dragging actions on any
portion of the resulting figure. The dragging and its visual consequences
draw their extraordinary power to reveal the logical constraints of the con-
struction from the highly developed and practiced human visual processing
system, especially in its ability to comprehend complex motion (Kosslyn &
387


Koenig, 1992, chap. 4). Another example is that of the TableTop (Hancock
& Kaput, 1990; Hancock, Kaput, & Goldsmith, 1992), which represents
database items as user-designable screen-objects that obey the imposition of
logical constraints in dynamic Euler-Venn diagrams or scatterplots. The au-
thor and colleagues have developed object-based reasoning environments
for learning multiplicative structures (Kaput & West, 1993) and additive
structures (Kaput, Upchurch, & Burke, in preparation). In all these computer
environments, the user manipulates objects on the screen, some of which
overcome the constraints of “physicality” (Kaput, in press b) to effect
discrete quantitative reasoning processes, and, in each case, these actions
can be linked to more formal representations. One last and powerful exam-
ple is the turtle geometry side of Logo, which was deliberately designed to
provide a child-centric way of constructing geometric objects (Papert,
1980).
2.6 Reflections on the Examples, and Loosening
the Universality Constraint
In each of these examples, and others not included, the mathematical repre-
sentation system (including the allowable actions on it) shares properties
with the world of physical objects and hence can tap into that wealth of pro-
cessing power and competence that develops from normal human develop-
ment apart from school. In some cases, selected attributes of physical ob-
jects are used in the elements to be manipulated (compromising on the uni-
versality criterion of mathematical notations), and in others, the actions
themselves are kinesthetically oriented. The dynamic and interactive prop-
erties of electronic media, combined with their extraordinary representa-
tional plasticity, offer an enormous, but largely untapped, resource for inno-
vation in mathematics education by utilizing naturally developing human
perceptual and conceptual powers. Of course, careful research will be
needed to determine how to balance notation learnability and conceptual
power – although the fulcrum of that balance will continue to move as the
technologies evolve.
3. LINKING AUTHENTIC EXPERIENCE WITH FORMAL REPRE-
SENTATIONS USING LINKED ACTION SYSTEMS
In this section, I shall examine strategies for dealing with the Island Prob-
lem that compromise the universality criterion of notations in order to capi-
talize on these powers. It is possible to devise notations that incorporate
some of the features of the situations or entities to which they refer. And, in-
deed, a whole spectrum of notations is possible that bridges gradually from
the concrete context to an abstract description.
388
REPRESENTATION AND AUTHENTIC EXPERIENCE


JAMES J. KAPUT
389
3.1 The General Case: Linkages at the Level of Actions
The diagram in Figure 5 will help orient my analysis of a type of technology
use that is increasingly common, involving linked representation systems.
It has become possible to link action systems physically, for example, co-
ordinate graphs and algebraic equations, so that an action on one system is
translated to the other, either automatically or on command of the user. It is
important to realize, however, that the linkage shown by the dashed arrow at
the bottom of Figure 5 does not represent a referential relationship, but a
physical connection – which might be either uni- or bidirectional. The refer-
ential relationship remains in the mind of the user. Of course, the purpose of
the physical connection is to make the relationship explicit and observable
at the level of actions in order to help build the integration of knowledge
structures and coordination of changes depicted at the top of the diagram.
This is a new power made possible by dynamic, interactive computational
media, but as outlined below, it has not yet been deeply applied.
3.2 Models of Situations, MBL, and Simulation
An important special case of general representational linkage involves one
system acting in the role of a model of the other, say Representation system
B representing Situation A. In the case of a traditional model, there is no di-
rect physical connection except by the transfer of measurements from the
situation to the model, usually by input of particular values reflecting the re-
sults of measurements. However, using various computer-linkable probes
(“Microcompter-Based Laboratory Equipment,” Thornton, 1993; Tinker,
1990), changes in the situation can be automatically transmitted, and dis-
played, in the model – a left to right connection in Figure 4 above. This can
greatly facilitate the development of understanding of the relations between
changes in the Situation A and changes in the Model B by supporting rapid
hypothesis testing. Such probes can even be designed so that changes in the


REPRESENTATION AND AUTHENTIC EXPERIENCE
model effect changes in the situation being modeled, for example, as with
an electric toy car that not only is MBL-linked to formal representations of
its motion, but also can be controlled from the computer – their motion can
be specified as a graph or equation in the computer. With such automatic
linkages, one must be aware that a rather large part of the modeling process
has been supplanted – the part having to do with determining what to mea-
sure and how to measure it, what units to use, and so forth.
Often, a particular situation may have several “views” afforded by differ-
ent representation systems with the same underlying mathematical model.
For example, the underlying model might be a linear function represented
by a table of numerical data as well as a coordinate graph. In this case,
Model B is replaced by a cluster of representations, perhaps linked with one
another, as a unit, representing A. In such a case, the model itself can either
be regarded as an abstraction, in the same way that one may choose to re-
gard a linear function as an abstraction apart from any particular representa-
tion, or it can be regarded as the totality of the cluster of representations, the
“total model” in Figure 6. Further, it is often the case that the actual
situation being modeled is not present, but rather, only text is available, and
the modeler must conceptualize the situation for which the text is an indirect
representation combining text-comprehension processing with prior
knowledge of such situations. As the model develops, the text becomes less
of an intermediary, and the mental model based in the mathematical
representations comes to relate more directly to the conceptualizations of
the situation (the top arrow in the diagram).
390


A
Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   143   144   145   146   147   148   149   150   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling