Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
curriculum. A report of the mathematical association. Leicester: Mathematical Associ-
ation. Healy, L., & Sutherland, R. (1990). Exploring mathematics with spreadsheets. Hemel Hempstead: Simon & Schuster. Hoyles, C., & Sutherland, R. (1989). Logo mathematics in the classroom. London: Routledge. Küchemann, D. E. (1981). Algebra. In K. Hart (Ed.), Children's understanding of Mathematics (pp. 11-16). London: Murray. Laborde, J., & Strässer, R. (1990). Cabri-Géomètre: A microworld of geometry for guided discovery learning. Zentralblatt für Didaktik der Mathematik, 90(5), 171-177. Mason, J. (1993, May). Expressing generality and roots of algebra. Paper presented at the conference on Research Perspectives on the Development and Emergence of Algebraic Thought, Montreal. Noss, R. (1985). Creating a mathematical environment through programming: A study of young children learning Logo. Umpublished Master's thesis, Institute of Education, University of London. Noss, R., & Hoyles, C. (1992). Looking back and looking forward. In C. Hoyles & R. Noss (Eds.), Learning mathematics and Logo. Cambridge; MA: MIT Press. Rojano, T., & Sutherland, R. (1993). Towards an algebraic approach: The role of spread- sheets. Proceedings of the 17th International Conference for the Psychology of Mathematics Education, Japan. ROSAMUND SUTHERLAND Sutherland, R. (1989). Providing a computer-based framework for algebraic thinking. Educational Studies in Maths, 20(3), 317-344. Sutherland, R. (1992). Some unanswered research questions on the teaching and learning of algebra. For the Learning of Mathematics, 11(3), 40-46. Sutherland, R. (1993). Connecting theory and practice: Results from the teaching of Logo. Educational Studies for Mathematics, 24, 1-19. Sutherland, R., Hoyles, C., & Noss, R. (1991). The microworlds course: Description and evaluation. Final Report of the Microworlds Project, Volume 1. Institute of Education, University of London. Sutherland, R., & Rojano, T. (in press). A spreadsheet approach to solving algebra prob- lems. Journal of Mathematical Behaviour. Tall, D. (1989). Different cognitive obstacles in a technological paradigm. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra. Hillsdale, NJ: LEA. 187 COMPUTER ENVIRONMENTS FOR THE LEARNING OF MATHEMATICS David Tall Warwick 1. INTRODUCTION Computer software for the learning of mathematics, as distinct from soft- ware for doing mathematics, needs to be designed to take account of the cognitive growth of the learner, which may differ significantly from the logical structure of the formal subject. It is therefore of value to begin by considering cognitive aspects relevant to the use of computer technology before the main task of focusing on computer environments and their role in the learning of mathematics. R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 189-199. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. 2. THE GROWTH OF (MATHEMATICAL) KNOWLEDGE The human brain is remarkable in its ability to store and retrieve complex information, but it is correspondingly limited in the quantity of independent pieces of data that may be manipulated in conscious short-term memory. To minimize the effects of these limitations, one method is to “chunk” the data by using an appropriate representation that is easier to manipulate. For in- stance, standard decimal notation is a compact method of representing nu- merical quantities of any size with corresponding routines for manipulation; algebraic notation can be used to formulate and manipulate certain types of data for problem-solving; graphical representations are appropriate for other tasks such as representation of complex data in a single gestalt. Traditional mathematics often consists in performing algorithms using these representations, minimizing the cognitive strain by routinizing the procedures so that they become automatic and require less conscious memory to perform. A more subtle transformation also occurs in which the symbols used to evoke a mathematical process begin to take on a life of their own as mental objects, so that processes become encapsulated as objects. Thus, counting using the number words gives the numeric symbols a related meaning as numbers, the process of addition becomes the concept of sum, repeated addition becomes product, and so on. This long-term cognitive process in which procedures are routinized to become more compressed and then encapsulated as mathematical objects in their own ENVIRONMENTS FOR LEARNING right is referred to by Piaget and subsequent authors as vertical growth, in contrast to the horizontal growth of relationships between different representations. Both vertical and horizontal growth impose difficulties on the individual. Vertical growth requires ample time for familiarization with the given pro- cess to enable it to be interiorized and also for the cognitive re-organization necessary during encapsulation of process as object. Horizontal growth re- quires the simultaneous grasping of two or more different representations and the links between them, which is likely to place cognitive strain on short-term memory resources. These difficulties may be alleviated in various ways by using a computer environment to provide support. Software may be designed to carry out some of the processes, leaving the learner to concentrate on others chosen to be the selected focus of attention. The sequence of learning in vertical growth may be modified by providing environments that allow the study of higher-level concepts in an intuitive form before or at the same time as they are constructed through encapsulation. Horizontal linkages between differ- ent representations may be programmed so that the individual operates on one representation and can see the consequences of this act in other linked representations. Moreover, because the computer can be programmed to re- spond in a pre-ordained manner, it can provide an environment in which the learner can explore the consequences of selected actions to predict and test theories under construction. 190 3. THE COMPUTER AS A PREDICTABLE ENVIRONMENT FOR LEARNING Skemp (1979, p. 163) makes a valuable distinction between different modes of building and testing conceptual structures (Table 1). The introduction of computer technology brings a new refinement to this theory. Whereas Mode 1 is seen as the individual acting on and experiment- ing with materials that are largely passive, a computer environment can be designed to re-act to the actions of the individual in a predictable way. This new form of interaction extends Skemp’s theory to four modes (Tall, 1989) in which building and testing environments are: Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling