Book · January 994 citations 110 reads 2,264 authors


parts." "Through a point outside a line one may draw a parallel and only one


Download 5.72 Mb.
Pdf ko'rish
bet97/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   93   94   95   96   97   98   99   100   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien


parts." "Through a point outside a line one may draw a parallel and only one
to that line." "The shortest way between two points is a straight line."
232


Being apparently self-evident, intuitively accepted cognitions have a co-
ercive impact on our interpretations and reasoning strategies. Intuitive cog-
nitions may sometimes be in accordance with logically justifiable truths, but
sometimes they may contradict them. Consequently, intuitions may play a
facilitating role in the instructional process, but, very often, contradictions
may appear: Intuitions may become obstacles – epistemological obstacles
(Bachelard) – in the learning, solving, or invention processes.
2. HISTORICAL EXAMPLES
Some historical examples may help to clarify this statement. How can we
explain why Euclidian geometry – which is true mathematics despite all its
imperfections – had been developed in Antiquity, while non-Euclidian ge-
ometries appeared only in the 19th century, 2,000 years later? If mathemat-
ics is a closed domain with regard to reality, if mathematics is essentially a
logical construction, what makes the difference? There is a fundamental dif-
ference: Euclidean geometry is based on intuitively accepted statements
(including the famous fifth postulate) and "common notions." All of them
are intuitively acceptable. As one knows, Aristotle distinguished between
axioms (or common notions) and postulates (see Boyer & Merzbach, 1989,
p. 120). This was, in fact, the idea. Building deductively, one has to start
from some basis that can be accepted without proof. Playing with axioms
that contradict our intuition would mean to accept certain statements with-
out proof and without the direct feeling of their certainty. Non-Euclidian
geometries do not hurt logic but they are counterintuitive. The entire con-
ception of mathematics had to be changed in order to feel free to accept, as
axioms, statements that contradict intuition.
A similar situation happened with infinity. Let us first recall the distinc-
tion between potential and actual infinity. A process is said to be potentially
infinite if one assumes that it can be carried out without ever stopping it.
Actual infinity refers to infinite sets of elements considered in their totality.
The process of division of a geometrical segment is potentially infinite,
while the totality of natural, rational, or real numbers constitute examples of
actual infinity. It has been shown that even 11- to 12-year-olds are able to
accept intuitively the potentially infinite extension of a line segment
(Fischbein, 1963) or its potentially infinite division.
On the contrary, actual infinity is a counterintuitive, abstract concept. Our
intelligence is adapted to finite magnitudes and, consequently, reasoning
with infinite magnitudes leads to apparent, paradoxes. As an effect, great
philosophers, scientists, and mathematicians like Aristotle, Gauss, or even
Poincaré rejected the use of the concept of actual infinity.
It was only in the 19th century, with Cantor, that actual infinity became
accepted as a mathematical concept as a result of a complete change of per-
spective.
EFRAIM FISCHBEIN
233


In the following, I will refer specifically to various types of interaction
between the formal, the algorithmic, and the intuitive components of a
mathematical activity.
3. OPERATIONS AND INTUITIVE MODELS
What has been said about the role of intuitive acceptance in the history of
science may be claimed also with regard to the learning process. The rela-
tionship between the formal and the intuitive aspects of mathematical rea-
soning in learning, understanding, and solving processes is very complex.
Sometimes there is a certain congruence, but, very often, conflictual phe-
nomena may appear that lead to misconceptions, systematic mistakes, and
epistemological obstacles. Especially sensitive to such conflicts are the do-
mains related to infinity and probability, but, as a matter of fact, in every
branch of mathematics, one may encounter concepts, statements, and opera-
tions that are difficult to understand and accept because of such contradic-
tory relationships between the formal and the intuitive constraints.
Let me mention a few examples. A very widespread misconception is that
"multiplication makes bigger" and "division makes smaller." That miscon-
ception has been encountered not only in elementary school students
(Fischbein, Nello, & Marino, 1985) but also in the preservice teacher (see,
e.g., Tirosh, Graeber, & Glover, 1986). A systematic analysis revealed a
world of psychological problems.
Let us consider the following two problems:
1. From 1 quintal of wheat, you get 0.75 quintals of flour. How much flour do
you get from 15 quintals of wheat?
2.1 kilo of a detergent is used in making 15 kilos of soap. How much soap can be
made from 0.75 kilos of detergent?
These are two examples from a set of questions given to 628 5th-, 7th-, and
9th-grade students from 13 different schools in Pisa, Italy. The students
were asked to choose only the solving operation without effectively per-
forming the computation. We quote the percentages of correct answers, ac-
cording to grades (see Fischbein, Nello, & Marino, 1985, p. 10):
Problem 1: 79 (Gr. 5); 74 (Gr. 7); 76 (Gr. 9)
Problem 2: 27 (Gr. 5); 18 (Gr. 7); 35 (Gr. 9)
For both problems, the solution consists in the multiplication 15 x 0.75.
Formally and procedurally the solution is the same. What makes the differ-
ence?
As one may observe by reading the two problems carefully, in the first
problem, the operator is a whole number (15), while, in the second, the op-
erator is a decimal. From a formal point of view, this should not make any
difference: Multiplication is a commutative operation. But intuitively things
look totally different.
234 FORMAL, ALGORITHMIC, AND INTUITIVE COMPONENTS


Let us imagine that behind the operation of multiplication lies an intu-
itively acceptable model (and, in fact, taught in elementary classes): Multi-
plication is repeated addition. The model is adequate, but only as long as
one deals with whole numbers. Three times five, means, in this interpreta-
tion, 5 + 5 + 5 = 15.
But what would 0.75 times 5 mean? Formally, "0.75 times 5" and "5
times 0.75" lead to the same result. But intuitively, they do not. 0.75 times 5
does not have an intuitive meaning. It cannot be represented in the terms of
the repeated addition model.
In a multiplication  x B, verbally expressed as "A times B," A is the op-
erator and B the operated. If Operator  is a decimal, the multiplication has
no intuitive meaning. As a consequence, when addressing a multiplication
problem in which the operator is a decimal, the student will not grasp the
solving procedure directly, that is, intuitively. The "repeated addition
model" operating behind the scenes will prevent the right solution instead of
facilitating it. As an effect of this situation (the influence of the "repeated
addition" model for multiplication applicable to whole numbers), the stu-
dent is led to believe intuitively that "multiplication makes bigger" and "di-
vision makes smaller." These statements are true, are intuitively acceptable,
but only as long as the operator is a whole number.
4. ALGORITHMS AND INTUITIVE MODELS
4.1 Example: The Operation of Subtraction
One knows, today, that students make various systematic mistakes in per-
forming subtraction, and many such "bugs" have been identified. I do not
intend to enter into details. I only want to specify that at least a number of
these bugs might be predicted from the primitive model of subtraction.
If you have in a container a number A of objects, (e.g., marbles) and you
want to take out a number of them, B (the primitive model of the operation
of subtraction), you can do it only if B < A. If B > A, the student will tend to
reverse the operation B - A. For instance (Resnik, 1983, p. 73):
EFRAIM FISCHBEIN
235
If the student has learnt the patent of "borrowing," several situations may
occur. The most typical difficulty appears when the student has to "borrow"
542
-389
200
326
-117
211
Another possibility, derived from the primitive model, is just to consider,
when B > A, that you take out as much as you can from the container and
the container remains empty. For instance (Resnik, 1983, p. 73):


(With regard to misconceptions in subtraction, see also Maurer, 1987;
Resnik, 1983.)
5. CONCEPTS AND INTUITIVE REPRESENTATIONS
5.1 The Concept of Set
Linchevski and Vinner (1988) have analyzed a number of misconceptions
held by elementary school teachers concerning the mathematical concept of
set. They have identified the following misconceptions: (a) Subjects con-
sider that the elements of a set must possess a certain explicit common
property. (b) A set must be composed of more than one element. The idea of
an empty set or of a singleton is rejected. (c) Repeating elements are consid-
ered as distinct elements. (d) An element of a set cannot be an element of
another set. (e) To these we may add a fifth common misconception, that is,
that two sets are equal if they contain the same number of elements.
A very simple interpretation may account for all these misconceptions. If
the model one has in mind, when considering the concept of set, is that of a

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   93   94   95   96   97   98   99   100   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling