Центр масс теорема о движении центра масс. Неинерциальные системы отсчета. Силы инерции физический смысл массы


Расчёт напряжённости бесконечной плоскости


Download 0.84 Mb.
bet31/40
Sana26.02.2023
Hajmi0.84 Mb.
#1232634
1   ...   27   28   29   30   31   32   33   34   ...   40
Bog'liq
mavzular ruscha

4.1. Расчёт напряжённости бесконечной плоскости



Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии E' = E'' = E. Поток вектора напряжённости равен 2EΔS. Применив теорему Гаусса, получим:

из которого

в системе СГСЭ
E = 2πσ.

4.2. Расчёт напряжённости бесконечной нити



Рассмотрим поле, создаваемое бесконечной нитью с линейной плотностью заряда, равной λ. Пусть требуется определить напряжённость, создаваемую этим полем на расстоянии R от нити. Возьмём в качестве гауссовой поверхности цилиндр с осью, совпадающей с нитью, радиусом R и высотой Δl. Тогда поток напряжённости через эту поверхность рассчитывается следующим образом:

В силу симметрии, модуль напряжённости в любой точке поверхности цилиндра будет одинаков. Тогда поток напряжённости через эту поверхность рассчитывается следующим образом:

Учитывается только площадь боковой поверхности цилиндра, так как поток через основания цилиндра равен нулю. Приравнивая 1 и 2 выражения, получим:


В системе СГС:

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.

ЯВЛЕНИЕ ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ
Термоэлектро́нная эми́ссия (эффект Ричардсонаэффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.
Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.
Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения — вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): I = BU3 / 2, где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.
При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: j = CT2e − A / kT, где А — работа выхода электронов из катода, Т — термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1 −1,5 эВ.
На явлении термоэлектронной эмиссии основана работа электронных ламп, а также электронно-лучевых трубок и других приборов, имеющих в своём составе электронную пушку. Также, явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.
Впервые об этом явлении сообщил Эдмонд Беккерель в 1853 году[1][2].
Явление было переоткрыто в 1873 году Фредериком Гатри в Великобритании[3]: во время работы с заряженными телами Гатри обнаружил, что раскалённый железный шар теряет свой заряд, если он заряжен отрицательно, но положительно заряженный шар заряда не теряет[4].
Также термоэлектронную эмиссию изучали Иоганн Гитторф (1869—1883)[5], Ойген Гольдштейн (1885)[6], Юлиус Эльстер[en] и Ганс Гейтель[en] (1882—1889)[7].
Эффект был вновь открыт Томасом Эдисоном 13 февраля 1880 года. В своих опытах Эдисон пытался выяснить, почему в лампе накаливания, которую он создал, нити накала перегорали раньше времени и почему на внутренней стороны колбы образовывался тёмный налёт вблизи положительного электрода нити. Эдисон производил опыты с несколькими экспериментальными вакуумированными лампами накаливания с дополнительной металлической пластиной или листочком фольги внутри колбы, которая сама электрически изолирована от нити накаливания и имеет дополнительный электрический вывод сквозь стекло колбы. В этих опытах Эдисон обнаружил, что если эта пластина имела положительный потенциал относительно нити накала, то через вакуум протекал заметный ток, а если потенциал пластины был отрицательный относительно нити накала, то ток отсутствовал, причём ток наблюдался только в том случае, если нить накала была достаточно сильно разогрета.
В дальнейшем это явление стало объясняться испусканием электронов, которые являются отрицательно заряженными частицами, нагретыми телами. Однако в описываемое время электрон ещё не был открыт: его открыл Джозеф Томсон лишь в 1897 году.
Эдисон также обнаружил, что ток от нагретой нити быстро увеличивался с ростом напряжения накала, и подал заявку на патент 15 ноября 1883 года на устройство для регулирования напряжения с использованием эффекта (патент США 307 031). Данный патент США на электронное устройство считается первым[8].
Несколько экземпляров ламп накаливания с демонстрацией эффекта Эдисон представил на Международной электрической выставке в Филадельфии в сентябре 1884 года. Британский учёный Уильям Прис, посетивший выставку, забрал с собой несколько таких ламп для изучения явления. После их изучения он подготовил в 1885 году доклад, в котором назвал термоэлектронную эмиссию «эффектом Эдисона»[9][10].
Затем британский физик Джон Амброз Флеминг, работавший в британской компании «Wireless Telegraphy», обнаружил, что эффект Эдисона может использоваться для детектирования радиоволн. Флеминг продолжил разработку двухэлектродной вакуумной лампы, теперь известной как электровакуумный диод, на которую получил патент 16 ноября 1904 года
Для выхода электрона из металла во внешнее пространство ему необходимо придать некоторую энергию, называемую работой выхода электрона, — преодолеть потенциальный барьер.
Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах из-за распределения электронов по скоростям (по энергии) некоторые из них обладают энергией, достаточной для преодоления потенциального барьера на границе металла. При комнатной температуре доля таких электронов очень мала и ток термоэлектронной эмиссии не наблюдается. С повышением температуры кинетическая энергия теплового движения быстро растёт — и термоэлектронная эмиссия становится заметной.
Исследование закономерностей термоэлектронной эмиссии можно наблюдать с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой баллон, из которого откачан газ, с размещёнными внутри него двумя электродами: катодом и анодом. В простейшем случае катодом может служить проволока из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего выполняют в виде полого металлического цилиндра, окружающего катод. Если между анодом и катодом приложить напряжение, то при горячем катоде и при подаче на анод напряжения, положительного относительно катода, ток начинает протекать через промежуток между анодом и катодом. Если на анод подавать отрицательное относительно катода напряжение, то ток прекращается, как бы сильно катод ни нагревали. Из этого опыта следует, что нагретый катод испускает отрицательные частицы — электроны.
Если поддерживать температуру накалённого катода постоянной и построить зависимость анодного тока от анодного напряжения — вольт-амперную характеристику вакуумного диода, то оказывается, что она нелинейна, то есть для вакуумного диода закон Ома не выполняется.
Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом степени трёх вторых (установлен русским физиком С. А. Богуславским и американским физиком И. Ленгмюром):
�=��3/2
где �  — коэффициент (первеанс[en]), зависящий от формы и размеров электродов, а также их взаимного расположения.
При увеличении анодного напряжения сила тока возрастает до некоторого максимального значения, при котором ток называется током насыщения, и далее не увеличивается при последующем повышении напряжения на аноде. При этом практически все электроны, покидающие катод, поглощаются анодом, поэтому дальнейшее увеличение напряжённости поля между анодом и катодом не может привести к увеличению тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.
Термоэлектронный диод также может использоваться для преобразования разности температур в электроэнергию напрямую, без движущихся частей — таковым служит термоэлектронный преобразователь, разновидность теплового двигателя.
Формула, которую на основе классической электронной теории металлов первоначально вывел Ричардс и в которую американский учёный С. Дэшман затем внёс уточнения, пользуясь квантовой теорией, называется уравнением Ричардсона — Дешмана.
Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики[12]:
�=(1−⟨�⟩)�0⋅�2⋅�−��/�� , где:

  • ⟨�⟩  — коэффициент отталкивания электронов от потенциального барьера, а точнее, значение, усреднённое по спектру термоэлектронов;

  • �0  — термоэлектрическая постоянная, равная 120,4 AK2⁡cm2,  а в модели свободных электронов А. Зоммерфельда — �0=4���2�ℎ3=1,20173×106A⋅m−2K−2;

  • �  — работа выхода (потенциал) электронов из катода;

  • �  — постоянная Больцмана;

  • �  и �  — заряд и масса электрона;

  • ℎ  — постоянная Планка;

  • �  — абсолютная температура.

Для практического применения эту формулу также записывают в виде[13]:
�=�⋅�2⋅�−�/�� ,
где �, �  — постоянные для данного материала катода параметры, определяемые из опыта.
Уменьшение работы выхода приводит к быстрому увеличению плотности тока насыщения. Обычно используют катоды, которые выдерживают большие температуры и обладают высокой эмиссионной способностью: как правило, из вольфрама, торированного вольфрама и из гексаборида лантана (LaB6 ). Также используют оксидные катоды (например, вольфрам, покрытый тонким слоем оксидов щёлочноземельных металлов) с пониженной рабочей температурой по сравнению с вышеперечисленными.


Download 0.84 Mb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   ...   40




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling