Chemistry and catalysis advances in organometallic chemistry and catalysis


ORGANOMETALLIC NANOPARTICLES 29. See for example: (a) Sun, S.; Fullerton, E. E.; Weller, D.; Murray, C. B. IEEE Trans. Magn. 2001


Download 11.05 Mb.
Pdf ko'rish
bet72/115
Sana23.06.2017
Hajmi11.05 Mb.
#9613
1   ...   68   69   70   71   72   73   74   75   ...   115

436

ORGANOMETALLIC NANOPARTICLES

29. See for example: (a) Sun, S.; Fullerton, E. E.; Weller, D.; Murray, C. B. IEEE Trans. Magn. 200137 , 1239; (b) Metin, O.; Mazumder,

V.; Ozkar, S.; Sun, S. J. Am. Chem. Soc. 2010132 , 1468; (c) Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N.

M.; Stamenkovic, V. R.; Sun, S. Nano Lett. 201111 , 1614.

30. Favier, I.; Massou, S.; Teuma, E.; Philippot, K.; Chaudret, B.; Gomez, M. Chem. Commun. 2008, 3296.

31. Weitz, D. A.; Huang, J. S.; Lin M. Y.; Sung, J. Phys. Rev. Lett. 198554 , 1416.

32. Gonzalez-Galvez, D.; Nolis, P.; Philippot, K.; Chaudret, B.; van Leeuwen, P. W. N. M. ACS Catal. 2012, 317.

33. (a) Jansat, S.; Gomez, M.; Philippot, K.; Muller, G.; Guiu, E.; Claver, C.; Castillon, S.; Chaudret, B. J. Am. Chem. Soc. 2004126 ,

1592; (b) Favier, I.; Gomez, M.; Muller, G.; Axet, M. R.; Castillon, S.; Claver, C.; Jansat, S.; Chaudret, B.; Philippot K. Adv. Synth.



Catal. 2007349 , 2459.

34. Gual, A.; Axet, M. R.; Philippot, K.; Chaudret, B.; Denicourt-Nowicki, N.; Roucoux, A.; Castill´on, S.; Claver, C. Chem. Commun.



2008, 2759.

35. Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Philippot, K.; Chaudret, B. Angew. Chem. Int. Ed. 201150 , 12080.

36. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. J. Mater. Chem. 200414 , 2161.

37. Lacroix, L.-M.; Ho, D.; Sun, S. Curr. Top. Med. Chem. 201010 , 1184.

38. Huber, D. Small 2005, 482.

39. Yang, H.; Ito, F.; Hasegawa, D.; Ogawa, T.; Takahashi, M. J. Appl. Phys. 2007101 , 09J112.

40. Farrell, D.; Majetich, S. A.; Wilcoxon, J. P. J. Phys. Chem. B 2003107 , 11022.

41. Peng, S.; Wang, C.; Xie, J.; Sun, S. J. Am. Chem. Soc. 2006128 , 10676.

42. Hadjipanayis, C. G.; Bonder, M. J.; Balakrishnan, S.; Wang, X.; Mao, H.; Hadjipanayis, G. C. Small 2008, 1925.

43. Andersen, R. A.; Faegri, K.; Green, J. C.; Haaland, A.; Lappert, M. F.; Leung, W.-P.; Rydpal, K. Inorg. Chem. 198827 , 1782.

44. Olmstead M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. 199130 , 2547.

45. Lacroix, L.-M.; Lachaize, S.; Falqui, A.; Blon, T.; Carrey, J.; Respaud, M.; Dumestre, F.; Amiens, C.; Margeat, O.; Chaudret, B.;

Lecante, P.; Snoeck, E. J. Appl. Phys. 2008103 , 07D521.

46. Margeat, O.; Dumestre, F.; Amiens, C.; Chaudret, B.; Lecante, P.; Respaud, M. Prog. Solid State Chem. 200533 , 71.

47. Dumestre, F.; Chaudret, B.; Amiens, C.; Renaud, P.; Fejes, P. Science 2004303 , 821.

48. Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Nature Mater. 2005, 750.

49. Tan, R. P.; Carrey, J.; Desvaux, C.; Lacroix, L.-M.; Renaud, P.; Chaudret, B.; Respaud, M. Phys. Rev. B Condens. Matter 200979 ,

174428.


50. Lacroix, L.-M.; Lachaize, S.; Falqui, A.; Respaud, M.; Chaudret, B. J. Am. Chem. Soc. 2009131 , 549.

51. Lacroix, L.-M.; Lachaize, S.; H¨ue, F.; Gatel, C.; Blon, T.; Tan, R. P.; Carrey, J.; Warot-Fonrose, B.; Chaudret, B. Nano Lett. 2012



12 , 3245.

52. Snoeck, E.; Gatel, C.; Lacroix, L.-M.; Blon, T.; Lachaize, S.; Carrey, J.; Respaud, M.; Chaudret, B. Nano Lett. 2008, 4293.

53. Meffre, A.; Mehdaoui, B.; Kelsen, V.; Fazzini, P. F.; Carrey, J.; Lachaize, S.; Respaud, M.; Chaudret B. Nano Lett. 201212 , 4722.

54. (a) Weller, D.; Moser, A. IEEE Trans. Magn. 199935 , 4423; (b) Gutfleisch, O. J. Phys. D Appl. Phys. 200033 , R157.

55. Osuna, J.; de Caro, D.; Amiens, C.; Chaudret, B.; Snoeck, E.; Respaud, M.; Broto, J.-M.; Fert, A. J. Phys. Chem. 1996100 , 14571.

56. Respaud, M. Broto, J. M.; Rakoto, H.; Fert, A. R.; Thomas, L.; Barbara, B.; Verelst, M.; Snoeck, E.; Lecante, P.; Mosset, A.; Osuna,

J.; Ould Ely, T.; Amiens, C.; Chaudret, B. Phys. Rev. B Condens. Matter 199857 , 2925

57. Dumestre, F.; Chaudret, B.; Amiens, C.; Fromen, M. C.; Casanove, M. J.; Renaud, P.; Zurcher, P. Angew. Chem. Int. Ed. 200241 ,

4286.

58. Dumestre, F.; Chaudret, B.; Amiens, C.; Respaud, M.; Fejes, P.; Renaud, P.; Zurcher, P. Angew. Chem. Int. Ed. 200342 , 5213.



59. Comesana-Hermo, M.; Ciuculescu, D.; Li, Z-A.; Stienen, S.; Spasova, M.; Farle, M.; Amiens, C. J. Mater. Chem. 201222 , 8043

60. Wetz, F.; Soulantica, K.; Respaud, M.; Falqui, A.; Chaudret, B. Mater. Sci. Eng. C 200727 , 1162

61. Soulantica, K.; Wetz, F.; Maynadi´e, J.; Falqui, A.; Tan, R. P.; Blon, T.; Chaudret, B.; Respaud, M. Appl. Phys. Lett. 200995 , 152504.

62. Cozzoli, P. D.; Pellegrino, T.; Manna, L. Chem. Soc. Rev. 200635 , 1195.

63. (a) Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E. J. Am. Chem. Soc. 2001123 , 9198; (b) Wilcoxon, J. P.; Provencio, P. P. J.

Am. Chem. Soc. 2004126 , 6402.

64. (a) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science 2004304 , 1787; (b) Costi, R.; Saunders E.; Banin, U. Angew.



Chem. Int. Ed. 201049 , 4878.

65. Wetz, F.; Soulantica, K.; Falqui, A.; Respaud, M.; Snoeck, E.; Chaudret B. Angew. Chem. Int. Ed. 200746 , 7079.

66. Maynadi´e, J.; Salant, A.; Falqui, A.; Respaud, M.; Shaviv, E.; Banin, U.; Soulantica, K.; Chaudret, B. Angew. Chem. Int. Ed. 2009,

48 , 1814.

67. Lacroix, L.-M.; Lachaize, S.; Carrey, J.; Respaud, M.; Chaudret, B. Actualit´e chimique 2011351 , 28–35.



32

ORGANOMETALLIC COMPOUNDS IN THE SYNTHESIS

OF NEW MATERIALS: OLD LIGANDS, NEW TRICKS

Piotr Sobota* and

Ł

ukasz John



Faculty of Chemistry, University of Wroc

ł

aw, Wroc

ł

aw, Poland

32.1

INTRODUCTION

Organometallic compounds and their derivatives, especially those containing alkoxide and aryloxide ligands, represent an

enormous family of species featuring broad structural diversities and their chemistry has significantly expanded recently [1].

The development of modern technologies and synthetic approaches has allowed desired products to be produced under mild

conditions and has provided more versatility over the stoichiometry, composition, structure, and morphology of the produced

inorganic materials than can be obtained using conventional methods such as solid-state reactions [2]. For instance, these

compounds are perfect candidates for sol–gel synthesis and various chemical vapor deposition techniques to produce highly

phase-pure oxide products [3].

Interest in the field of mixed-metal alkoxo-organometallic and alkoxide chemistry has significantly expanded, largely

because of their attractive structural chemistry, catalytic properties, and potential for industrial applications. The applicability

of such compounds is related to the cooperation of two different metals in a single complex, which can result in interesting

properties that are not the simple sum of the individual metal ions, and are often crucial to achieve the desired activity

from a system. In this chapter we present three relatively unexplored synthetic methods for obtaining functional materials

using organometallic-derived compounds aimed at producing heterometallic precursors for a wide range of oxide materials.

First, stopping the common tendency toward oligomerization of metal alkoxides by the addition of organometallic Lewis

acids to reaction systems, the so-called deoligomerization by cocomplexation strategy will be discussed [4]. Second, it

will be shown that coordinated alcohol molecules that possess a hydroxyl group at the metal site are a perfect anchor for

organometallic moieties [5]. Third, a simple and unique synthetic method comprising the elimination of a cyclopentadienyl

(Cp) ring from group 4 metallocenes to produce CpH using group 2 alkoxides and alcohol as a source of protons to produce

heterometallic species will be highlighted [6]. Finally, the use of mixed-metal complexes as precursors to oxide materials

will be highlighted.

32.2

FUNCTIONALIZED ALCOHOLS AS LIGANDS

Functionalized by O- and N-donor atoms, alcohols are now ubiquitous ligands in coordination chemistry because of their

unique properties. Being relatively strong

σ -donors and generally weak π-acceptors, O,- and O,N-ligands generally form

bonds with various metal centers, resulting in heterometallic complexes with organometallic moieties, for example, MR

2

+



Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book,

First Edition. Edited by Armando J. L. Pombeiro.

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

437


438

ORGANOMETALLIC COMPOUNDS IN THE SYNTHESIS OF NEW MATERIALS: OLD LIGANDS, NEW TRICKS



O

O

H

O

O

H

N

O

H

2-(Dimethylamino)ethanol

2-Methoxyethanol

2,3-Dihydro-2,2-dimethylbenzofuran-7-ol



Figure 32.1

Functionalized alcohols.

(M

= group 13 metal; R = Me, Et, etc.). Donor-functionalized alcohols (Fig. 32.1) are potentially polydentate ligands,



which can give rise to compounds with enhanced stability through ligand chelation. The choice of functionalized alcohols

is generally dictated by how well their metal complexes crystallize from common hydrocarbon solutions.



32.3

ORGANOMETALLICS IN THE SYNTHESIS OF HETEROMETALLIC COMPLEXES

Heterometallic alkoxide complexes and their derivatives play key roles in many fields of chemistry. For example, they are

an attractive group of molecular precursors to binary metal oxides such as perovskites ABO

3

(A



= group 2 cation, B =

group 4 cation) and spinels AB

2

O

4



(B

= group 13 cation). Coordinated alkoxo groups and alcohol molecules attached to the

metal of a group 2 alkoxide result in excellent anchors for organometallic moieties. Such a connection can be created in two

ways depending on the metal-to-alcohol ratio (Scheme 32.1). For instance, a group 2 alkoxide organometallic compound

M R

3

(where M



= group 13 cation, R = alkyl group) can be bound directly to an alkoxide oxygen atom (Scheme 32.1,

Eq. (a)).

Conversely, when a metal alkoxide also possesses coordinated alcohol molecules (Scheme 32.1, Eq. (b)), the driving

force for the reaction is the evolution of a hydrocarbon RH, and the resulting M R

2

+

moiety becomes coordinated to a



[M(OR)

4

]



2

core (M



= group 2 cation, ROH = functionalized alcohol). It is worth noting that M-to-M (1:2) is defined on

the molecular level and exactly matches spinel-like double oxides.

M

+ 2


O

O

H



Toluene

H



2

M

O



O

O

O



Toluene

+ 2


M

R

3



M

O

O



O

O

M



R

3

M



R

3

M



+ 4

O

O



H

Toluene


H

2



M

O

O



O

O

O



O

O O


H

H

Toluene



+ 2

M

R



3

M

O



O

O

O



O

O

O O



M

R

2



R

2

M



+ 2R

H

M



 = Ca

2+

, Sr



2+

, Ba


2+

M

 = Al



3+

, Ga


3+

, In


3+

R = Me, Et

O

O

H



= Functionalized alcohol

(a)

(b)

Scheme 32.1

Synthetic strategies for the cooperation of group 13 organometallic moieties with group 2 alkoxides.



ORGANOMETALLICS IN THE SYNTHESIS OF HETEROMETALLIC COMPLEXES

439

[Ca


9

(OCH


2

CH

2



OCH

3

)



18

(HOCH


2

CH

2



OCH

3

)



2

]

Ca



O

O

O



O

Toluene


+ 18AlMe

3

Ca



O

O

O



O

O

O



H =

Ca

O



Ca

Ca

O



O

Ca

O



O

Ca

O



Ca

O

O



O

Ca

O



O

Ca

O



Ca

O

O



O

O

Ca



9

O

16



core

Me

3



Al

AlMe


3

9

9



+ 18AlMe

3

+ 18THF



Toluene

Toluene


Ca

O

O



O

O

THF



THF

AlMe


3

9

O



O

H

Coordination polymer



Monomer

Me

3



Al

Agostic interaction

Agostic interaction

1

2

Scheme 32.2

General scheme for the addition of AlMe

3

molecules to alkoxo oxygen atoms and the saturation of the calcium coordination



sphere by THF.

32.3.1

Deoligomerization by Cocomplexation using Organometallics

A numbers of calcium alkoxides have been synthesized to date [7]. Because their derivatives possess groups such as MeO

,

EtO



, and


i

PrO


, they often form insoluble, large aggregates that have a tendency to continuously equilibrate in solution

[8]. Because of this, the synthesis of calcium alkoxides of low nuclearity is cumbersome and usually requires the use of

sterically large chelating ligands [9] or Lewis acids to prevent aggregation.

We have developed an efficient deoligomerization approach using organometallic compounds [4] (Scheme 32.2). For

example, calcium 2-methoxyethoxide ([Ca

9

(OCH


2

CH

2



OCH

3

)



18

(HOCH


2

CH

2



OCH

3

)



2

]) [10], which contains nine calcium

atoms, partially dissociates in toluene and then reacts with an excess of AlMe

3

to produce a crystalline coordination polymer



[Ca

{(μ-OCH


2

CH

2



OCH

3

)(



μ-Me)AlMe

2

}



2

]

n

, in which every monomer unit has a 1 : 2 calcium/aluminum ratio (Fig. 32.2,

complex 1) in the solid state. The polymeric structure is created by the presence of weak

γ -agostic interactions of the

methyl groups of trimethylaluminum with calcium atoms. Each unit possesses two bridging (

μ-Me)AlMe

2

groups that allow



it to form a tetrametallaoctacyclic ring. A similar ring was found in the calcium-aluminum dimer reported by Hanusa et al.

[11]. AlMe

3

acts as both a Lewis acid and as a neutral base, interacting through a methyl group. Such a coordination mode



shows the carbanionic character of the alkyl group.

The analogous reaction using tetrahydrofuran (THF) leads to the saturation of calcium sites via the addition of two solvent

molecules to form a six-coordinate monomeric [Ca

{(μ-OCH


2

CH

2



OCH

3

)AlMe



3

}

2



(THF)

2

] complex causing the rupture of



the agostic interactions that maintain the polymeric architecture (Fig. 32.2, complex 2) [4].

1

2

[Ca(OCH


2

CH

2



OCH

3

)



2

(AlMe


3

)

2



]

n

Toluene/THF



n[Ca(OCH

2

CH



2

OCH


3

)

2



(AlMe

3

)



2

(THF)


2

]

Coordination polymer with



calcium–aluminum agostic interactions

Monomer


Figure 32.2

Molecular structures of [Ca

{(μ-OCH

2

CH



2

OCH


3

)(

μ-Me)AlMe



2

}

2



] (1) and [Ca

{(μ-OCH


2

CH

2



OCH

3

)AlMe



3

}

2



(THF)

2

] (2)



(the H atoms are omitted for clarity).

440

ORGANOMETALLIC COMPOUNDS IN THE SYNTHESIS OF NEW MATERIALS: OLD LIGANDS, NEW TRICKS

These examples clearly demonstrate that the oligomerization process can be easily shifted by organometallic species

anchoring on alkoxo oxygens or by the introduction of weak donors such as THF to the reaction (Scheme 32.2). These two

synthetic pathways effectively prevent agglomeration and allow the production of well-defined calcium– aluminum species

that possess metal-to-metal ratios equivalent to those for spinels.



32.3.2

Coordinated Alcohol Molecules as a Perfect Anchor for Organometallics

Among the synthetic methods to obtain heterobimetallic alkoxo-organometallic compounds, one of the least explored

reactions involves organometallic complexes with aryloxides that feature coordinated alcohols at the metal site [5].

Our laboratory has prepared group 2 aryloxide complexes [M(ddbfo)

2

(ddbfoH)


2

] (M


= Ba

2

+



[5], Sr

2

+



[12]; ddbfoH

=

2,3-dihydro-2,2-dimethylbenzofuran-7-ol) that possess protonated hydroxyl groups coordinated to the metal which could be



used as supports for other organometallic fragments (Scheme 32.3) [13]. The driving force for these reactions, carried out in

toluene, is the removal of the hydroxyl protons from the coordinated ddbfoH molecules [14] and the liberation of alkanes,

resulting in the coordination of aryloxo oxygen atoms with an appropriate MR

x

+

moiety to form [M



{(μ-ddbfo)

2

M R



x

}

2



]

(M

= Ba



2

+

, Sr



2

+

; M



= Zn

2

+



, Al

3

+



, Ga

3

+



, In

3

+



; R

= Me, Et; = 1, 2) (see examples in Fig. 32.3).

The reaction of barium 7-benzofuranoxide with an excess of AlMe

3

in a toluene/THF mixture resulted in a six-coordinate



[Ba

{(μ-ddbfo)AlMe

3

}

2



(THF)

2

] compound.



In this case, the substitution of two ddbfoH molecules by THF is observed and trimethylaluminum simply coordinates

to the aryloxo oxygen atoms [5] (Scheme 32.3).

Depending on these complexes compositions, the obtained compounds constitute well-defined molecular precursors to

highly phase-pure perovskite-like (e.g., BaZn

2

O

3



) and spinel-like (e.g., BaAl

2

O



4

, BaGa


2

O

4



, BaIn

2

O



4

) binary oxides. For

example, the thermolysis of [Ba

{(μ-ddbfo)

2

AlMe


2

}

2



] at 1300

C leads to a BaAl



2

O

4



double oxide. The diffraction pattern

in Fig. 32.4 shows that the obtained barium–aluminum oxide matches the BaAl

2

O

4



spinel [11].

32.3.3

Promoting Effect of Group 2 Alkoxides on the Protonation of Metallocenes

Heterometallic complexes, especially those containing transition and main group metals, are of great interest [15]. Interest

in these compounds stems from their applications in stoichiometric and catalytic reactions [16]. Furthermore, polymetallic

clusters of paramagnetic metal ions have attracted much interest since the discovery that these molecules can display

single-molecule magnetism [17]. They also constitute an interesting group of single-source precursors for mixed-metal

oxides [3].

O

O

H



O

H

O



O

O

M



O

O

O



O

O

O



M

O

O



O

O

M



R

R



M

R



O

O

O



O

Ba

O



O

O

O



Zn

Zn

R



+

R

MR



2 (excess)

+

Et



ZnEt

(excess)


M

′ = Al


3+

, Ga


3+

, In


3+

R = Me, Et

M = Ba

2+

, Sr



2+

− 2


RH

− 2


EtH

O

O



Ba

Al

Me



Me

Me

O



O

Al

Me



Me

Me

O



O

Toluene


+ AlMe

3 (excess)

Toluene/THF

− 2ddbfo


H

ddbfoH =


O

OH


Download 11.05 Mb.

Do'stlaringiz bilan baham:
1   ...   68   69   70   71   72   73   74   75   ...   115




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling