Chemistry and catalysis advances in organometallic chemistry and catalysis
Download 11,05 Mb. Pdf ko'rish
|
698 ENDOHEDRAL METALLOFULLERENES TODAY: MORE AND MORE VERSATILE SHIPS −2.0 −1.0
0.0 +1.0
E (V vs SCE) (a)
(b) O P Figure 51.10 Cyclic voltammetric profiles recorded at a platinum electrode in toluene-acetonitrile (4:1) solution of (a) Dy@C 82 and
(b) Dy@C 82 [CCH(COOMe) 2 PPh
3 ]. Scan rate: 0.05 V/s. (a) Adapted from Reference 25; (b) adapted from Reference 19. The optimized structure of Dy@C 82 is adapted from Reference 26. (See insert for color representation of the figure.) TABLE 51.5 Formal Electrode Potentials (V vs SCE) of the Redox Processes of the [C 82 ] 3 −
82 EMFs and Separation of the First Oxidation and First Reduction (in eV) in Toluene–Acetonitrile (4 : 1) Solution Complex
[C 82 ] 3 −/2−
[C 82 ] 3 −/4−
[C 82 ] 4 −/5−
[C 82 ] 5 −/6−
[C 82 ] 6 −/7−
E ◦ References Dy@C 82 [CCH(COOMe) 2 PPh
3 ] +0.23 −0.23 −1.20
−1.61 0.46
19 Dy@C
82 +0.34
−0.11 −0.82
−1.43 −1.78
0.45 25
Formal Electrode Potentials (V vs SCE) of the Redox Processes of the [C 82 ] 2 −
82 and Separation of the First Oxidation and First Reduction (in eV) in 1,2-Dichlorobenzene Solution Complex
[C 82 ] 0/ + [C 82 ] −/0 [C 82 ] 2 −/−
[C 82 ] 2 −/3−
[C 82 ] 3 −/4−
[C 82 ] 4 −/5−
[C 82 ] 5 −/6−
E ◦ Reference Sm@C 82 +0.99 a −0.27
−0.44 −0.94
−1.33 1.26
17b C 82 +1.29 −0.12
−0.47 −1.01
−1.37 1.41
21c a Better defined in DPV. Let us finally examine the electrochemical behavior of Sm@C 82 derivatives, in which the inner metal ion has oxidation state +2.
Figure 51.11 compares the cyclic voltammetric profile of the isomer Sm@C 2 (5)-C 82 [17b] with that of C 82 [21c]. On passing, we point out that the crystal structure of C 82 is known [27]. As deduced by Table 51.6, once again the redox processes of M@C 82 follow the previously discussed trend M@C 82 with respect to free fullerene, even if the HOMO–LUMO gap looks like to be unaffected. 51.7 C 84 -MONOMETAL ENDOHEDRAL METALLOFULLERENES Concerned with C 84 EMFs, the only X-ray characterized monometal derivative is Sm@C 84 in its D 3d and C 2 isomeric forms [28]. The electrochemistry of the C 2 isomer has been investigated in MeCN-C 6 H 5 Me solution [29], but the voltammetric profiles are not well resolved, probably because of the low solubility of the derivative. C 94 -MONOMETAL ENDOHEDRAL METALLOFULLERENES 699 −2.0
−1.0 0.0
+1.0 +2.0
E (V vs SCE) (a)
(b) Figure 51.11 Cyclic voltammetric responses recorded at a platinum electrode in 1,2-dichlorobenzene solution of (a) C 82 and (b) Sm@C 82 (C 2 (5) isomer). Scan rate 0.1 V/s. (a) Adapted from Reference 21d; (b) adapted from Reference 17b. −1.0 0.0
E (V vs SCE) Figure 51.12 Differential pulse voltammetric profile recorded at a platinum electrode in toluene–acetonitrile (4 : 1) solution of Sm@C 90 .
51.8 C 90 -MONOMETAL ENDOHEDRAL METALLOFULLERENES The crystal structure of Sm@C 90 in the C 2 (40) isomeric form is known [30]. As shown in Fig. 51.12, in MeCN-C 6 H
Me solution, it affords four well-resolved reduction processes in differential pulse voltammetry (DPV) [29], the assignment of which is reported in Table 51.7, together with that of Sm@C 94 discussed in the following. 51.9 C 92 -MONOMETAL ENDOHEDRAL METALLOFULLERENES The molecular structure of the two isomeric forms Sm@C 1 (42)-C
92 and Sm@C s (24)-C
92 have been X-ray characterized [31], but the electrochemical behavior of Sm@C 1 (42)-C 92 (in MeCN-C 6 H
Me solution) does not afford sufficiently resolved voltammetric profiles [29]. 51.10 C 94 -MONOMETAL ENDOHEDRAL METALLOFULLERENES The last mono-EMF we discuss is the X-ray characterized Sm@C 3v (134)-C
94 [31], which gives rise to a well-defined voltammetric profile, Fig. 51.13 [29]. −1.0
0.0 E (V vs SCE) Figure 51.13 Differential pulse voltammetric profile recorded at a platinum electrode in toluene–acetonitrile (4 : 1) solution of Sm@C 94 .
700 ENDOHEDRAL METALLOFULLERENES TODAY: MORE AND MORE VERSATILE SHIPS TABLE 51.7 Formal Electrode Potentials (V vs SCE) of the Redox Processes of the [C n ] 2 −
90 and Sm@C 94 in MeCN-C 6 H 5 Me Solution a [C n ] 2 −/3− [C
] 3
[C n ] 4 −/5− [C
] 5
Sm@C 90 −0.01 −0.26 −0.81
−1.17 Sm@C
94 +0.10
−0.23 −0.72
−1.08 a Reference 29. The pertinent formal electrode potentials are compiled in Table 51.7. As seen, Sm@C 94 results slightly easier to reduce than Sm@C 90 .
CONCLUSION Endohedral monometallofullerenes are the “sine qua non” key to understand nature and physicochemical properties of the widest class of EMFs, a field that had extraordinarily grown in the last years and that will become more and more important in the following years, also in view of the multiple technological applications of such innovative molecules. In this light, we have given an updated survey of the electron transfer ability of those monometallic endohedral fullerenes, the molecular structure of which has been unequivocally stated by single-crystal X-ray diffraction. Given the high electron transfer activity of EMFs, which often gives rise to sequences of chemically reversible redox steps, it sounds surprising that no crystal structure of such molecules in different oxidation states is available, which would allow to judge if and at which extent the location of the incarcerated metal(s) might be conditioned by electron addition/removal processes. In fact, there are a number of electrochemical and spectral evidences that monometallofullerenes are stable in oxidized and reduced forms [32], but attempts to crystallize such ionic species seem to have not been carried out or to have failed.
The University of Siena is gratefully acknowleged for making available the on-line facilities. REFERENCES 1. (a) Heath, J. R.; O’Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Tittel, F. K.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107 , 7779; (b) Chai, Y.; Guo, T.; Jin, C. M.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L. H.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95 , 7564. 2. A few representative examples: (a) Bethune, D. S.; Johnson, R. D.; Salem, J. R.; de Vries, M. S.; Yannoni, C. S. Nature 1993, 366 , 123; (b) Shinohara, H. Rep. Prog. Phys. 1998, 63 , 843; (c) Liu, S.; Sun, S. J. Organomet. Chem. 2000, 599 , 74; (d) Nagase, S.; Kobayashi, K.; Akasaka, T.; Wakahara, T. Fullerenes: Chemistry, Physics, and Technology; John Wiley & Sons, Inc.: New York, 2000; p 95; (e) Sidorov, L. N.; Boltalina, O. V. Russ. Chem. Rev. 2002, 71 , 535; (f) Guha, S.; Nakamoto, K. Coord. Chem. Rev. 2005, 249 , 1111; (g) Dunsch, L.; Yang S. Small 2007, 3 , 1298; (h) Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L. Angew. Chem. Int. Ed. 2009, 48 , 7514; (i) Yamada, M.; Akasaka, T.; Nagase, S. Acc. Chem. Res. 2010, 43 , 92; (j) Meng, J.; Wang, D.; Wang, P. C.; Jia, L.; Chen, C.; Liang, X.-J. J. Nanosci. Nanotech. 2010, 10 , 1; (k) Dorn, H. C.; Fatouros, P. P. Nanosc. Nanotech. Lett. 2010, 2 , 65; (l) Feng, L.; Akasaka, T.; Nagase, S. Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization,
Z.; Zhao Y. Nanoscience 2011, 3 , 362; (p) Akasaka, T.; Lu X. Chem. Rec. 2012, 12 , 256; (q) Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Chem. Soc. Rev., in press, 2012, 41 . 3. (a) Pinz´on, J. R.; Plonska-Brzezinska, M. E.; Cardona, C. M.; Athans, A. J.; Gayathri, S. S.; Guldi, D. M.; Herranz, M. ´ A.; Mart´ın, N.; Torres, T.; Echegoyen, L. Angew. Chem. Int. Ed. 2008, 47 , 4173; (b) Jorn, R.; Zhao, J.; Petek, H.; Seideman, T. ACS Nano 2011, 5 , 7858. 4. (a) Echegoyen, L.; Palkar, A.; Melin, F. Electrochemistry of Functional Supramolecular Systems; John Wiley and Sons, Inc.: Hoboken, NJ, 2010; p 201; (b) Zanello, P.; Nervi, C.; Fabrizi de Biani, F. Inorganic Electrochemistry. Theory, Practice and Application, 2nd ed.; RSC Cambridge: UK, 2011; p 355. REFERENCES 701 5. (a) Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Sakai, T.; Ono, Y.; Kawachi, K.; Yokoo, K.; Ono, S.; Omote, K.; Kasama, Y.; Ishikawa, S.; Komuro, T.; Tobita, H. Nat. Chem. 2010, 2 , 678; (b) Aoyagi, S.; Nishibori, E.; Sawa, H. Spring-8 Research Frontiers; 2010, p 92; (c) Okada, H.; Komuro, T.; Sakai, T.; Matsuo, Y.; Ono, Y.; Omote, K.; Yokoo, K.; Kawachi, K.; Kasama, Y.; Ono, S.; Hatakeyama, R.; Kaneko, T.; Tobita, H. RSC Adv. 2012, 2 , 10624. 6. Varganov, S. A.; Avramov, P. V.; Ovchinnikov, S. G. Phys. Sol. State 2000, 42 , 388. 7. Wakahara, T.; Nikawa, H.; Kikuchi, T.; Nakahodo, T.; Rahman, G. M. A.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Yamamoto, K.; Mizorogi, N.; Slanina, Z.; Nagase, S. J. Am. Chem. Soc. 2006, 128 , 14228. 8. (a) Nikawa, H.; Kikuchi, T.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Rahman, G. M. A.; Akasaka, T.; Maeda, Y.; Yoza, K.; Horn, E.; Yamamoto, K.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2005, 127 , 9684; (b) Lu, X.; Nikawa, H.; Kikuchi, T.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Angew. Chem. Int. Ed. 2011, 50 , 6356. 9. Nikawa, H.; Yamada T.; Cao, B.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Akasaka, T.; Yoza, K.; Nagase, S. J. Am. Chem. Soc. 2009, 131 , 10950. 10. Xu, W.; Niu, B.; Shi, Z.; Lian, Y.; Feng, L. Nanoscale 2012, 4 , 6876. 11. Nikawa, H.; Yamada, T.; Cao, B.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Akasaka, T.; Yoza, K.; Nagase, S. J. Am. Chem. Soc. 2011,
12. Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2010, 132 , 5896. 13. Hachiya, M.; Nikawa, H.; Mizorogi, N.; Tsuchiya, T.; Lu, X.; Akasaka, T. J. Am. Chem. Soc. 2012, 134 , 15550. 14. (a) Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saitot, Y.; Ohno, M.; Shinohara, H. Nature 1995, 377 , 46; (b) Lu, X.; Nikawa, H.; Feng, L.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Mizorogi, N.; Slanina, Z.; Nagase, S. J. Am. Chem. Soc. 2009, 131 , 12066. 15. (a) Maeda, Y.; Matsunaga, Y.; Wakahara, T.; Takahashi, S.; Tsuchiya, T.; Ishitsuka, M. O.; Hasegawa, T.; Akasaka, T.; Liu, M. T. H.; Kokura, K.; Horn, E.; Yoza, K.; Kato, K.; Okubo, S.; Kobayashi, K.; Nagase, S.; Yamamoto, K. J. Am. Chem. Soc. 2004, 126 , 6858; (b) Feng, L.; Nakahodo, T.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kato, T.; Horn, E.; Yoza, K.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2005, 127 , 17136; (c) Takano, Y.; Yomogida, A.; Nikawa, H.; Yamada, M.; Wakahara, T.; Tsuchiya, T.; Ishitsuka, M. O.; Maeda, Y.; Akasaka, T.; Kato, T.; Slanina, Z.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2008, 130 , 16224; (d) Maeda, Y.; Sato, S.; Inada, K.; Nikawa, H.; Yamada, M.; Mizorogi, N.; Hasegawa, T.; Tsuchiya, T.; Akasaka, T.; Kato, T.; Slanina, Z.; Nagase, S. Chem. Eur. J. 2008, 16 , 2193; (e) Akasaka, T.; Lu, K.; Kuga, H.; Hidefumi, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Yoza, K.; Nagase, S. Angew. Chem. Int. Ed. 2010, 49 , 9715; (f) Lu, X.; Nikawa, H.; Takahiro Tsuchiya, T.; Akasaka, T.; Makoto Toki, M.; Sawa, H.; Mizorogi, N.; Nagase, S. Angew. Chem. Int. Ed. 2010, 41 , 594; (g) Sato, S.; Nikawa, H.; Seki, S.; Wang, L.; Luo, G.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Angew. Chem. Int. Ed. 2012, 51 , 1581. 16. Takano, Y.; Aoyagi, M.; Yamada, M.; Nikawa, H.; Slanina, Z.; Mizorogi, N.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kato, T.; Nagase, S. J. Am. Chem. Soc. 2009, 131 , 9340. 17. (a) Yang, H.; Jin, H.; Wang, X.; Liu, Z.; Yu, M.; Zhao, F.; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2012, 134 , 14127; (b) Xu, W.; Niu, B.; Feng, L.; Shi, Z.; Lian, Y. Chem. Eur. J. 2012, 18 , 14246. 18. (a) Akasaka, T.; Kono, T.; Takematsu, Y.; Nikawa, H.; Nakahodo, T.; Wakahara, T.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Liu, M. T. H.; Yoza, K.; Kato, T.; Yamamoto, K.; Mizorogi, N.; Slanina, Z.; Nagase, S. J. Am. Chem. Soc. 2008, 130 , 12840; (b) Suzuki, M.; Lu, X.; Sato, S.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Inorg. Chem. 2012, 51 , 5270. 19. Li, X.; Fan, L.; Liu, D.; Sung, H. H. Y.; Williams, I. D.; Yang, S.; Tan, K.; Lu, X. J. Am. Chem. Soc. 2007, 129 , 10636. 20. (a) Nagase, S.; Kobayashi, K. Chem. Phys. Lett. 1993, 214 , 57; (b) Nishibori, E.; Takata, M.; Sakata, M.; Inakuma, M.; Shinohara, H. Chem. Phys. Lett. 1998, 298 , 79. 21. (a) Suzuki, T.; Maruyama, Y.; Kato, T.; Kikuchi, K.; Achiba, Y. J. Am. Chem. Soc. 1993, 115 , 11006; (b) Kikuchi, K.; Nakao, Y.; Suzuki, S.; Achiba, Y. J. Am. Chem. Soc. 1994, 116 , 9367; (c) Suzuki, T.; Kikuchi, K.; Oguri, F.; Nakao Y., Suzuki, S.; Achiba, Y.
22. Feng, L.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Lian, Y.; Akasaka, T.; Mizorogi, N.; Kobayashi, K.; Nagase, S.; Kadish, K. M. Chem. Phys. Lett. 2005 , 405 , 274. 23. (a) Nagase, S.; Kobayashi, K. Chem. Phys. Lett. 1994, 228 , 106; (b) Ding, J.; Weng, L.-T.; Yang, S. J. Phys. Chem. 1996, 100 , 11120; (c) Muthukumar, K.; Larsson, J. A. J. Phys. Chem. A 2008, 112 , 1071. 24. Ton-That, C.; Shard, A. G.; Egger, S.; Taninaka, A.; Shinohara, H.; Welland, M. E. Surf. Sci. 2003, 522 , L15. 25. Fan, L.; Yang, S.; Yang, S. Chem. Eur. J. 2003, 9 , 5610. 26. Iida, S.; Kubozono, Y.; Slovokhotov, Y.; Takabayashi, Y.; Kanbara, T.; Fukunaga, T.; Fujiki, S.; Emura, S.; Kashino, S. Chem. Phys.
27. (a) Kawada, H.; Fujii, Y.; Nakao, H.; Murakami, Y.; Watanuki, T.; Suematsu, H.; Kikuchi, K.; Achiba, Y.; Ikemoto, I. Phys. Rev. B 1995, 51 , 8723; (b) Ziegler, K.; Amsharov, K. Y.; Halasz, I.; Jansen, M. Z. Anorg. Allg. Chem. 2011, 637 , 1463. 28. Yang, H.; Yu, M.; Jin, H.; Liu, Z.; Yao, M.; Liu, B.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2012, 134 , 5331. 29. Liu, J.; Shi, Z.; Gu, Z. Chem. Asian J. 2009, 4 , 1703.
702 ENDOHEDRAL METALLOFULLERENES TODAY: MORE AND MORE VERSATILE SHIPS 30. Yang, H.; Jin, H.; Zhen, H.; Wang, Z.; Liu, Z.; Beavers, C. M.; Brandon, Q; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. J. Am.
31. Jin, H.; Yang, H.; Yu, M.; Liu, Z.; Beavers, C. M.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2012, 134 , 10933. 32. (a) Akasaka, T.; Wakahara, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Kondo, M.; Shirakura, S.; Okubo, S.; Maeda, Y.; Kato, T.; Kako, M.; Nakadaira, Y.; Nagahata, R.; Gao, X.; Van Caemelbecke, E.; Kadish, K. M. J. Am. Chem. Soc. 2000, 122 , 9316; (b) Akasaka, T.; Wakahara, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Kondo, M.; Shirakura, S.; Maeda, Y.; Kato, T.; Kako, M.; Nakadaira, Y.; Gao, X.; Van Caemelbecke, E.; Kadish, K. M. J. Phys. Chem. B 2001, 105 , 2971; (c) Sun, B.; Li, M.; Luo, H.; Shi, Z.; Gu, Z. Electrochim. Acta 2002, 47 , 3545; (d) Wakahara, T.; Okubo, S.; Kondo, M.; Maeda, Y.; Akasaka, T.; Waelchli, M.; Kako, M.; Kobayashi, K.; Nagase, S.; Kato, T.; Yamamoto, K.; Gao, X.; Van Caemelbecke, E.; Kadish, K. M. Chem. Phys. Lett. 2002, 360 , 235; (e) Tsuchiya, T.; Wakahara, T.; Shirakura, S.; Maeda, Y.; Akasaka, T.; Kobayashi, K.; Nagase, S.; Kato, T.; Kadish, K. M. Chem. Mat. 2004, 16 , 4343; (f) Maeda, Y.; Miyashita, J.; Hasegawa, T.; Wakahara, T.; Tsuchiya, T.; Feng, L.; Lian, Y.; Akasaka, T.; Kobayashi, K.; Nagase, S.; Kako, M.; Yamamoto, K.; Kadish, K. M. J. Am. Chem. Soc. 2005, 127 , 2143.
POSTSCRIPT: A SHORT HISTORY OF THE ICOMC CONFERENCES F. Ekkehardt Hahn Institut f¨ur Anorganische und Analytische Chemie, Westf¨alische Wilhelms-Universit¨at M¨unster, M¨unster, Germany 1 INTRODUCTION The XXVth International Conference on Organometallic Chemistry (ICOMC-XXV) was held in Lisbon, Portugal, from September 2 to 7, 2012. Professor Armando J. L. Pombeiro (Centro de Quimica Estrutural, Instituto Superior Tecnico, Lisboa) acted as conference chairman. The Lisbon conference, being the silver edition (the 25th ICOMC conference held) and organized in the gold year (50th year after the first ICOMC conference was held in Cincinnati in 1963), attracted over 1200 participants from 54 countries all over the world (circa 1100 were foreigners) making it one of the most successful ICOMC conferences ever held, in spite of the on-going general economical crises. ICOMC-XXV featured 5 plenary, 17 keynote lectures, and 88 invited special satellite lectures in addition to 195 contributed oral presentations. A total of 794 posters were presented in two poster sessions, and 165 flash oral presentations were delivered mainly by young researchers (a possibility that was introduced for the first time in this series of conferences). About 38% of the participants were students. While many younger scientists have so far only participated in a few ICOMC conferences, ICOMC-XXV featured one participant, Professor Bruce King from Athens, Georgia, who managed to attend all 25 ICOMC meetings over the past 50 years. To celebrate the success of the ICOMC conferences in general and the ICOMC-XXV in particular, Professor A. J. L. Pombeiro acts as editor of the book entitled “Recent Advances in Organometallic Chemistry and Catalysis.” As you hold it in your hands, you will notice that eminent scientists from diverse areas have provided chapters dealing with hot topics of current interest thereby illustrating the diversity, richness, and potential of modern organometallic chemistry. The success of ICOMC-XXV and of the preceding 24 ICOMC conferences provide evidence that international meetings of organometallic chemists are very useful and attractive. I am, therefore, sure that the organometallic community worldwide can look forward to the next 50 years of ICOMC conferences. The ICOMC conferences will continue to serve as forum for the exchange of ideas and for the presentation of new and exciting findings in the field of organometallic chemistry.
First Edition. Edited by Armando J. L. Pombeiro. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
Download 11,05 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling