Chirchiq davlat pedagogika instituti matematika va informatika fakulteti
II. Magistrlik dissertatsiyasini tayyorlash bo‘yicha hisobot
Download 1.69 Mb.
|
Taymanova hisobotlar
II. Magistrlik dissertatsiyasini tayyorlash bo‘yicha hisobot
Magistrlik dissertatsiyasi bo’yicha ilmiy raxbar bilan birgalikda Toshkent viloyati Chirchiq davlat pedagogika instituti bosh binoosida ilmiy izlanishlar olib borildi. Magistirlik dissertatsiyasining II bobi tayyorlanib, tanlangan dissertatsiya ishi yuzasidan adabiyotlar yig’ildi. Tanlangan mavzu bo‘yicha bibliografiya va axborot resurslar, kutubxona fondlari va elektron resurslari, mavjud darsliklar bilan tanishib chiqmoqdaman. 1. Khudoyberdiyev A.Kh., Omirov B.A. Infinitesimal deformations of null-filiform Leibniz superalgebras . // Journal of Geometry and Physics. Netherlands. 2013. Vol.74.-P. 370-380.(№ 39. Impact Factor Search. IF=0.797 ). 2. Burde D.,Steinhoff Ch. Classification of orbit closures of 4-dimensional complex Lie algebras. Journal of algebra. 1999 3. Nijenhuis A., Richardson R. W. Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 1966. Vol. 72. P.1-29. 4. Fialowski A., Millionschikov D.V. Cohomology of gradied Lie algebras of maximal class. Journal of Algebra. 2006. Vol. 296. P.157-176. 5. Khakimjanov Yu., Navarro R.M., Deformations of filiform Lie algebras and superalgebras. J. Geom. Phys. 2010. Vol. 60. P.1156-116. 6. Gerstenhaber M.On the deformation of rings and algebras. Ann. of Math. 1964. Vol. 79.N2. P.59-103. 7. Хамфрис Дж. Введение в теорию алгебр Ли и их представлений. Москва 2003. с.12-16. 8. J.C. Ndogmo and P.Winternitz, Solvable Lie algebras with abelian nilradicals, J.Phys. A 27 (1994),405-423. 9. J.M. Ancochea Bermudez, R.Campoamor-Stursberg, and L.Garcia Vergnolle, Classification of Lie algebras witz naturally graded quasi-filiform nilradicals, J.Geom. Phys. 61 (2011), 2168-2186. 10. S.Tremblay and P.Winternitz, Solvable Lie algebras with triangular nilradicals, J.Phys. A 31 (1998), 789-806. 11. G.Leger, E.Luks, Cohomology theorems for Borel-like solvabl Lie algebras in arbitrary characteristic, Canad. J.Math. 24 (1972), 1019-1026. 12. Ayupov Sh., Arzikulov F. (2014). 2-Local derivations on semifinitevon Neumann algebras. Glasgow Mathematical Journal. 56. Pp. 9-12. 13. Ayupov Sh., Arzikulov F. (2017). 2-Local derivations on associative and Jordan matrix rings over commutative rings. LinearAlgebra and its Applications. 522 Pp. 28-50. 14. Ayupov Sh., Kudaybergenov K. (2012). 2-Local derivations and automorphisms on B(H). Journal of Mathematical Analysis and Applications. 395. Pp. 15-18. 15. Ayupov Sh., Kudaybergenov K., Omirov B. (2020). Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society. 43(3). Pp. 2199–2234. 16. Ayupov Sh., Khudoyberdiyev A., Yusupov B. (2020). Local and 2-Local Derivations of Solvable Leibniz Algebras. International Journal of Algebra and Computation. 30(6). Pp. 1185-1197. 17. Casas J.M., Ladra M., Omirov B.A., Karimjanov I.A. (2013) Classification of solvable Leibniz algebras with nullfiliform nilradical. Linear Multilinear Algebra. 61 (6). Pp. 758–774. 18. Kadison R. (1990). Local derivations. Journal of Algebra. 130(2). Pp. 494–509. 19. Semrl P. (1997). Local automorphisms and derivations on B(H). Proceedings of the American Mathematical Society. 125. Pp. 2677-2680. Download 1.69 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling