Chiziqli dasturlashga keltiriladigan masalalaming matematik modelini qurishni kompyuter dasturlar orqali tavsiflash 1-masala


Download 286.03 Kb.
bet1/3
Sana04.02.2023
Hajmi286.03 Kb.
#1165790
  1   2   3
Bog'liq
1-amaliy mashgulot


Chiziqli dasturlashga keltiriladigan masalalaming matematik modelini
qurishni kompyuter dasturlar orqali tavsiflash
1-masala.
Bir buyum yasash uchun uzunligi 120 sm bo’lgan sterjendan 80 ta, uzunligi 100 sm bo’lgan sterjendan 120 ta, uzunligi 70 sm bo’lgan sterjendan 102 ta kerak. Ularni qirqib olish uchun uzunligi 220sm bo’lgan metal sterjendan eng kamida qancha kerak ?
Yechish. Berilgan materialdan kerakli bo’laklarni tayyorlashning 5 hil ratsional usullari bor:

Qirqish usuli

Bo’laklar soni

Chiqindi miqdori, sm

120sm

100sm

70sm

1

1

1

0

0

2

1

0

1

30

3

0

2

0

20

4

0

1

1

50

5

0

0

3

10

Matematik modelini tuzamiz. Buning uchun quyidagi jadvaldan foydalanamiz


Sterjen uzunligi

1- usul

2- usul

3- usul

4- usul

5- usul

Jami kerakli sterjen soni

120sm

1

1

0

0

0

80

100sm

1

0

2

1

0

120

70sm

0

1

0

1

3

102

Material soni

x1

x2

x3

x4

x5




Matematik modeli.

1) Maqsad funksiyasi(material eng kam sariflansin):


x1+x2+x3+x4+x5min
2) Chegaraviy shartlar(kerakli miqdorda sterjen bo’laklari qirqib olinsin):
x1+x2≥80
x1+2x3+x4≥120
x2+x4+3x5≥102
3) Noma’lumlarni nomanfiylik shartlari
x1≥0 x2≥0 x3≥0 x4≥0 x5≥0

Bu modelni MathCAD oynasiga quyidagi ko’rinishda yozib echish mumkin:

x1:=1 x2:=0 x3:=0 x4:=0 x5:=0
F(x1,x2,x3,x4,x5):= x1+x2+x3+x4+x5

Given

x1+x2≥80
x1+2x3+x4≥120
x2+x4+3x5≥102
x1≥0 x2≥0 x3≥0 x4≥0 x5≥0
P:=Minimize(F, x1,x2,x3,x4,x5)


Yechim:



MatLab tizimida echish quyidagi rasmda ko’rsatilgan




1-rasm. Optimal qirqish masalasi material eng kam sariflansin sharti bo’yicha yechish

Bunda oynasida m-faylda modelning yechimini topish dasturi, oynasida hisoblash natijasi berilgan.


Bu masalani MatLAB va MatCAD dasturlarida yechish usullarini solishtirganda ko’rinadiki, MatCAD da yozich tartibi oddiy matematik yozuvga juda yaqin, shuning uchun bir qarashdayoq qanday masala yechilayotgani tushinarli. MatLAB da yozish esa matritsaviy ko’rinishda yoziladi. Bir qarashda tushinish oson bo’lmasada, MatCAD dagi yozuvdan ancha ixcham dastur yoziladi.
Har ikkala dasturda ham bir xil natija olindi. Bu natija quyidagini ko’rsatadi: uzunligi 220sm bo’lgan materialdan eng kam miqdordagi sarfi uchun 1-usulda 80ta, 3-usulda 20ta, 5-usulda 34ta olib qirqish kerak. Bunda jami 134 ta material sariflanadi.
MatLABda linprog funktsiyasida A va b massavlar manfiy ishora bilan yozilgan: , chunki linprog funksiyasi faqat kichik yoki teng belgisi vat eng belgisi bilan berilgan chegaraviy shartlar uchun qo’llaniladi. Katta belgisi bilan yozilgan shartlarni -1 ga ko’paytirib kichik belgili shartga aylantirish kerak yoki linprog argumentiga yozayotganda minus bilan yozish kerak. Quyidagi rasmda minus qo’yilmagan holdagi yechim berilgan.

2-rasm. Optimal qirqish masalasi A va b noto’gri kiritilgan xol.

Bu natija mutlaqo boshqa, chunki unda


x1+x2≤80
x1+2x3+x4≤120
x2+x4+3x5≤102
sart bo’yicha yechim olingan, bu esa masalani qo’yilishiga mos kelmaydi.
Bundan xulosa shuki, olingan yechimni, albatta adekvatligini teksirib ko’rish kerak, keyingi natijaga yaxsilab e’tibor bersak, u xaqiqatdan ancha yiroq.
Masala shartida “Bir buyum yasash uchun uzunligi 120 sm bo’lgan sterjendan 80 ta, uzunligi 100 sm bo’lgan sterjendan 120 ta, uzunligi 70 sm bo’lgan sterjendan 102 ta kerak” deyilgan. Biz tuzgan modelda kami bilan qanch kerakligi yozilgan:
x1+x2≥80,
x1+2x3+x4≥120,
x2+x4+3x5≥102,
bunda ortiqch detal qirqilishiga yo’l qo’yiladi. Agar
x1+x2=80
x1+2x3+x4=120
x2+x4+3x5=102
ko’rinishda shart yozilsa ortiqcha detal qirqilishiga yo’l qo’yilmaydi, bunda MatLABda olingan yechim quyidagi rasmda ko’rsatilgan(linprog argumentida farq bor).

3-rasm. Optimal qirqish masalasi Ax = b shart boyicha yechim.

Bu holda ham yechim oldingi yechim bilan ustma-ust tushdi.



Download 286.03 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling