Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet8/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   4   5   6   7   8   9   10   11   ...   37
1 {u 6 k} h1,s` (Xi) + tk1 {u > k + 1} h2,s` (Xi))




Zi,u :=










(2.21)




k,`=1








































































































































we have |Yn,iZi,u| 6 K/n for a constant K independent of n and i hence
















lim




1

E










n

Yn,i

2







= d+1

lim




1

E




[ntu][ntu−1] Zi




2

.

(2.22)





































n→+∞ n

X




!










n→+∞ n







X
































































i=1
















u=1


































i=1































































































































































By expanding the square and using stationarity, it follows that
















n→+∞ n E
















2

=













(2.23)
















n




n,i!








































X





































lim 1




Y







σ2



























































































i=1




























where









































































d+1
















X




























σ2 =

X

(tutu−1)




Cov (Z0,u, Zi,u) .










(2.24)







u=1

i∈Z

























































































































This is the variance of

d




a




N
















N







d



















covariance

Pk,`=1




k,`




k,`, where (




k,`)k,`=1 is a centered Gaussian vector having






















d+1
















EhZk,`,(u)0, Zk(u0,`)

0

,ii

,

(2.25)

Cov (Nk,`, Nk0,`0) = u=1 (tu tu−1) iZ
















where



















X













X












































































Zk,`,i(u) = (1 tk) 1 {u 6 k} h1,s` (Xi) + tk1 {u > k + 1} h2,s` (Xi) .

(2.26)

We can also check by spliting the sum over u that for k 6 k0,
















Cov (Nk,`, Nk0,`0) = Cov (W (s`, tk) , W (s`0, tk0)) .







(2.27)



Now, it remains to check the third condition of Theorem A.1. We take ak := α (k) and since Yn,i is a function of Xi, the inequality αn (k) 6 α (k) holds.

This ends the proof of Proposition 2.1.

2.1.3. Convergence of the linear part.


Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling