Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet4/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   2   3   4   5   6   7   8   9   ...   37
1 {u > k + 1} h2,s` (Xi) .
































(2.10)

Defining for iIn,u, 1 6 u 6 d + 1 the random variable Yn,i by

(Xi) ,




d



















nt




(2.11)

























Yn,i := k,`=1 ak,` n n[ntk] 1 {u 6 k} h1,s` (Xi) + [ nk] 1 {u > k + 1} h2,s`




X































it follows that




d




n










k,`=1 ak,`Wn (s`, tk) = n−1/2




i=1 Yn,i. Observe also that E[Yn,i] = 0. We

want to check the conditions of Theorem A.1. The first condition follows from




d

P










P










d




|ak,`| (1 {u 6 k} |h1,s` (Xi)| + 1 {u > k + 1} |h2,s` (Xi)|) 6 2

(2.12)

|Yn,i| 6

|ak,`| .

k,`=1






















k,`=1




X






















X




For the second condition, we first observe that if 1 6 u < u0 6 d + 1, then


1

Cov




X

Yn,i,

X




Yn,i




→ 0.

(2.13)




0

n

























i In,u

i0 In,u
















Indeed, by Proposition A.2, for iIn,u and i0In,u0,



















d










2













Cov (Yn,i, Yn,i0)




α (i0




i)




X




ak,`







=: α (i0




i) K

(2.14)

| 6






2

|

|






|




























Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling