Деаэратор Термический струйный деаэратор атмосферного давления Атмосферный деаэратор на квартальной котельной Деаэратор


Download 89.66 Kb.
bet1/3
Sana03.02.2023
Hajmi89.66 Kb.
#1148569
  1   2   3
Bog'liq
Деаэратор


Деаэратор

Термический струйный деаэратор атмосферного давления

Атмосферный деаэратор на квартальной котельной
Деаэратор — техническое устройство, реализующее процесс деаэрации[1] некоторой жидкости (обычно воды или жидкого топлива), то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях и котельных также играет роль бака запаса питательной воды для паровых котлов или подпитки теплосети.

  • 7Термические деаэраторы

    • 7.1Показатели и обозначения

  • 8Литература

  • 9Примечания

Иностранная терминология[править | править код]
В значительной части зарубежных систем технических терминов нет единого термина «деаэратор» для описания элемента тепловой схемы станции в виде бака с колонкой; например, в немецком колонка называется Entragaserdom, и понятие «деаэратор» (Entgaser) относится только к ней, а бак запаса питательной воды — Speisewasserbehälter. В последнее время и в некоторых русскоязычных публикациях (о нетрадиционных для наших предприятий конструкциях либо переводных) бак отделяют от деаэратора.
Типы деаэраторов
Существует большое количество видов вертикальных и горизонтальных деаэраторов, выпускаемых различными производителями, каждый из которых может иметь конструкционные отличия. На рисунках 1 и 2 схематично показаны элементы устройства двух основных видов деаэраторов.
Деаэратор тарельчатого типа

Рис. 1 Схема устройства тарельчатого деаэратора атмосферного давления.
Обычно горизонтальный тарельчатый деаэратор, изображенный на рисунке 1 имеет вертикальный бак деаэрации, установленный на горизонтальном баке с питательной водой для котла. Недеаэрированная питательная вода сверху подаётся в вертикальную деаэрационную камеру и стекает вниз через ряд перфорированных тарелок деаэрационной колонны и попадает в бак с питательной водой через отверстия перфорации. Пар низкого давления для деаэрациии вводится снизу стопки перфорированных тарелок и проходит вверх через их отверстия. В некоторых конструкциях деаэраторов используются различные виды прокладок и мембран вместо перфорированных тарелок для обеспечения большей поверхности раздела фаз и перемешивания пара с водой.
Растворенный в воде газ переходит в газовую паровую фазу, парогазовая смесь сбрасывается через вентиляционное отверстие в верхней части колонны (так называемый «выпар»). Обычно отверстие сброса выпара снабжено клапаном, регулирующим количество отходящего пара и рассчитанном на открывание при превышении некоторого давления — давления насыщенного пара при рабочей температуре деаэратора (102—110 С для деаэраторов атмосферного типа). В некоторых конструкциях может быть предусмотрен конденсатор выпара для конденсации воды из выпара и возврата уносимого тепла в систему.
Деаэрированная вода стекает в горизонтальный накопительный бак, из которого она подается в парогенирирующую установку.
Во многих конструкциях деаэраторов часть пара подаётся через перфорированную трубу в нижней части накопительного бака, расположенную под поверхностью воды. Этот пар поддерживает температуру воды в баке и дополнительно деаэрирует её барботацией.
Для уменьшения потерь тепла через теплообмен с окружающим воздухом и исключения ожогов персонала котельной поверхность деаэратора теплоизолируют.
Деаэратор распылительного типа

Рис. 2 Схема устройства распылительного деаэратора
Как показано на рисунке 2, обычно деаэратор распылительного типа представляет собой горизонтальную ёмкость, в которой есть зона подогрева (E) и зона деаэрации (F). Эти зоны разделены пластиной (С). Пар низкого давления попадает в ёмкость через паровую гребенку в нижней части бака.
Питающая вода котла распыляется в зоне (Е), в которой она нагревается паром при помощи паровой гребенки. Распылитель питающей воды (А) и зона подогрева нагревают воду до точки кипения для удаления растворенных газов в зоне деаэрации.
Предварительно нагретая питающая вода попадает в зону деаэрации (F), в которой происходит её деаэрация под действием пара, поднимающегося от паровой гребенки. Газы, выделяемые из воды удаляются через вентиляцию, предусмотренную в верхней части ёмкости. Аналогично деаэраторам тарельчатого типа, в некоторых конструкциях предусмотрены устройства рекуперации воды из отходящего газа. Также, вентиляционный тракт снабжают клапаном, регулирующим количество отходящего пара, для обеспечения наличия сигнальной видимой струи пара.
Деаэрированная питающая вода подается насосом из нижней части деаэратора в парогенерирующую установку.
Назначение[править | править код]

  • Защита трубопроводов и оборудования от коррозии.

  • Обеспечение запаса воды перед паровыми котлами или для подпитки теплосети.

Принцип действия[править | править код]
Основная статья: Деаэрация
В жидкости газ может присутствовать в виде:

  • собственно растворённых молекул;

  • микропузырьков (порядка 10−7м), образующихся вокруг частиц гидрофобных примесей;

  • в составе соединений, разрушающихся на последующих стадиях технологического цикла с выделением газа (например, NaHCO3).

В деаэраторе происходит процесс массообмена между двумя фазамижидкостью и парогазовой смесью. Кинетическое уравнение для концентрации {\displaystyle C_{\Gamma }}  растворённого в жидкости газа при его равновесной (с учётом содержания во второй фазе) концентрации {\displaystyle C_{\Gamma }^{P}} , исходя из закона Генри, выглядит как
{\displaystyle {dC_{\Gamma } \over d\tau }=kf(C_{\Gamma }^{P}-C_{\Gamma })} ,
где {\displaystyle \tau }  — время; f — удельная поверхность раздела фаз; k — скоростной коэффициент, зависящий, в частности, от характерного диффузионного пути, который газ должен преодолеть для выхода из жидкости. Очевидно, для полного удаления газов из жидкости требуется {\displaystyle C_{\Gamma }^{P}=0}  (парциальное давление газа над жидкостью должно стремиться к нулю, то есть выделившиеся газы должны эффективно удаляться и замещаться паром) и бесконечное время протекания процесса. На практике задаются технологически допустимой и экономически целесообразной глубиной дегазации.
В термических деаэраторах, основанных на принципе диффузионной десорбции, жидкость нагревается до кипения; при этом растворимость газов близка к нулю, образующийся пар (выпар) уносит газы ({\displaystyle C_{\Gamma }^{P}}  снижается), а коэффициент диффузии высок (растёт k).
Известны небольшие установки, где некоторая степень деаэрации достигается облучением жидкости ультразвуком[2]. При облучении воды ультразвуком интенсивностью порядка 1 Вт/см2 происходит снижение {\displaystyle C_{\Gamma }^{P}}  на 30—50 %, k возрастает примерно в 1000 раз, что приводит к коагуляции пузырьков с последующим выходом из воды под действием Архимедовой силы.
Выпар — это смесь выделившихся из воды газов и небольшого количества пара, подлежащая удалению из деаэратора. Для нормальной работы деаэраторов распространённых конструкций его расход (по пару по отношению к производительности) должен составлять не менее 1—2 кг/т, а при наличии в исходной воде значительного количества свободной или связанной углекислоты — 2—3 кг/т. Чтобы избежать потерь рабочего тела из цикла, выпар на крупных установках конденсируют. Если охладитель выпара, применяемый для этой цели, устанавливается на исходной воде деаэратора (как на рис.), она должна быть достаточно сильно недогрета до температуры насыщения в деаэраторе. В вакуумных деаэраторах часть выпара может конденсироваться эжектором.
Термические деаэраторы классифицируются по давлению.


Download 89.66 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling