Demand-oriented biogas production and biogas storage in digestate by flexibly feeding a full-scale biogas plant
Download 1.63 Mb. Pdf ko'rish
|
1-s2.0-S0960852421004387-main
References
Bajpai, P., 2017. Process Parameters Affecting Anaerobic Digestion. In: Anaerobic Technology in Pulp and Paper Industry. Springer, pp. 13–27 . Barjenbruch, M., Hoffmann, H., Kopplow, O., Tr¨anckner, J., 2000. Minimizing of foaming in digesters by pre-treatment of the surplus-sludge. Water Sci. Technol. 42, 235–241. https://doi.org/10.2166/wst.2000.0215 . Bonk, F., Popp, D., Weinrich, S., Str¨auber, H., Kleinsteuber, S., Harms, H., Centler, F., 2018. Intermittent fasting for microbes: How discontinuous feeding increases functional stability in anaerobic digestion 06 Biological Sciences 0605 Microbiology. Biotechnol. Biofuels 11, 1–15. https://doi.org/10.1186/s13068-018-1279-5 . Cioabla, A.E., Dumitrel, G.A., Ionel, I., 2017. Evaluation by kinetic models of anaerobe digestion performances for various substrates and Co-substrates. Rev. Chim. 68, 2614–2617. https://doi.org/10.37358/rc.17.11.5940 . Deublein, D., Steinhauser, A., 2008. Biogas from waste and renewable resources: an introduction. 4, Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/ 9783527621705. Dittmer, C., Krümpel, J., Lemmer, A., 2021. Modeling and simulation of biogas production in full scale with time series analysis. Microorganisms 9, 1–10. https:// doi.org/10.3390/microorganisms9020324 . Dittmer, C., Krümpel, J., Lemmer, A., 2021. Power demand forecasting for demand- driven energy production with biogas plants. Renewable Energy 163, 1871–1877. https://doi.org/10.1016/j.renene.2020.10.099 . Enders, F., Merker, D., Kolano, M., B¨ohm, L., Kraume, M., 2019. Numerical Characterization of the Bubble Rise Behavior in Viscoelastic Liquids. Chem. Eng. Technol. 42, 1395–1403. https://doi.org/10.1002/ceat.201900076 . Hao, J., Wang, H., 2015. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresour. Technol. 175, 367–373. https://doi.org/10.1016/j.biortech.2014.10.106 . Hoffmann, R.A., Garcia, M.L., Veskivar, M., Karim, K., Al-Dahhan, M.H., Angenent, L.T., 2008. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol. Bioeng. 100, 38–48. https://doi.org/10.1002/bit.21730 . Hülsemann, B., Zhou, L., Merkle, W., Hassa, J., Müller, J., Oechsner, H., 2020. Biomethane potential test: Influence of inoculum and the digestion system. Appl. Sci. (Switzerland) 10. https://doi.org/10.3390/app10072589 . IEA, 2019. Flagship report - November 2019. World Energy Outlook 2019, Paris. Jiajia, C., Xiujin, L., Yanping, L., 2011. Effect of mixing rates on anaerobic digestion performance of rice straw. Trans. Chinese Society Agric. Eng. 27 . Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I., 2008. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresour. Technol. 99, 4919–4928. https://doi.org/ 10.1016/j.biortech.2007.09.015 . B. Ohnmacht et al. Bioresource Technology 332 (2021) 125099 9 Karim, K., Hoffmann, R., Klasson, K.T., Al-Dahhan, M.H., 2005. Anaerobic digestion of animal waste: Effect of mode of mixing. Water Res. 39, 3597–3606. https://doi.org/ 10.1016/j.watres.2005.06.019 . Kim, M., Ahn, Y.H., Speece, R.E., 2002. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 36, 4369–4385. https://doi.org/10.1016/S0043-1354(02)00147-1 . Kolano, M., Kraume, M., 2019. Flow Compartments in Viscoelastic Fluids Using Radial Impellers in Stirred Tanks. Chemical Eng. Technol. 1–11. https://doi.org/10.1002/ ceat.201900122 . Kougias, P.G., Boe, K., Angelidaki, I., 2013. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors. Bioresour. Technol. 144, 1–7. https://doi.org/10.1016/j.biortech.2013.06.028 url:https://doi.org/10.1016/j. biortech.2013.06.028. Kougias, P.G., Boe, K., Tsapekos, P., Angelidaki, I., 2014. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour. Technol. 153, 198–205. https://doi.org/10.1016/j.biortech.2013.11.083 . Kowalczyk, A., Harnisch, E., Schwede, S., Gerber, M., Span, R., 2013. Different mixing modes for biogas plants using energy crops. Appl. Energy 112, 465–472. https://doi. org/10.1016/j.apenergy.2013.03.065 . Kress, P., N¨agele, H.J., Oechsner, H., Ruile, S., 2018. Effect of agitation time on nutrient distribution in full-scale CSTR biogas digesters. Bioresour. Technol. 247, 1–6. https://doi.org/10.1016/j.biortech.2017.09.054 . Lemmer, A., Naegele, H.J., Sondermann, J., 2013. How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale agricultural biogas digesters. Energies 6, 6255–6273. https://doi.org/10.3390/en6126255 . Lienen, T., Kleyb¨ocker, A., Brehmer, M., Kraume, M., Moeller, L., G¨orsch, K., Würdemann, H., 2013. Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy, Sustainability Soc. 3, 1–14. https://doi.org/10.1186/2192- 0567-3-20 . Lindmark, J., Eriksson, P., Thorin, E., 2014a. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste. Waste Manage. 34, 1391–1397. https://doi.org/10.1016/j.wasman.2014.04.006 . Lindmark, J., Thorin, E., Bel Fdhila, R., Dahlquist, E., 2014b. Effects of mixing on the result of anaerobic digestion. Review. Renewable Sustainable Energy Rev. 40, 1030–1047. https://doi.org/10.1016/j.rser.2014.07.182 . Mauky, E., Jacobi, H.F., Liebetrau, J., Nelles, M., 2015. Flexible biogas production for demand-driven energy supply - Feeding strategies and types of substrates. Bioresour. Technol. 178, 262–269. https://doi.org/10.1016/j.biortech.2014.08.123 . Mauky, E., Weinrich, S., Jacobi, H.F., N¨agele, H.J., Liebetrau, J., Nelles, M., 2017. Demand-driven biogas production by flexible feeding in full-scale – Process stability and flexibility potentials. Anaerobe 46, 86–95. https://doi.org/10.1016/j. anaerobe.2017.03.010 . Moeller, L., Goersch, K., Neuhaus, J., Zehnsdorf, A., Mueller, R.A., 2012. Comparative review of foam formation in biogas plants and ruminant bloat. Energy, Sustainability Society 2, 1–9. https://doi.org/10.1186/2192-0567-2-12 . M¨onch-Tegeder, M., Lemmer, A., Hinrichs, J., Oechsner, H., 2015. Development of an in- line process viscometer for the full-scale biogas process. Bioresour. Technol. 178, 278–284. https://doi.org/10.1016/j.biortech.2014.08.041 . Naegele, H.J., Lemmer, A., Oechsner, H., Jungbluth, T., 2012. Electric energy consumption of the full scale research biogas plant unterer lindenhof: Results of longterm and full detail measurements. Energies 5, 5198–5214. https://doi.org/ 10.3390/en5125198 . Nickens, H.V., Yannitell, D.W., 1987. The effects of surface tension and viscosity on the rise velocity of a large gas bubble in a closed, vertical liquid-filled tube. Int. J. Multiph. Flow 13, 57–69. https://doi.org/10.1016/0301-9322(87)90007-3 url: http://www.sciencedirect.com/science/article/pii/0301932287900073. Ohnmacht, B., Kress, P., Oechsner, H., Lemmer, A., 2020. Investigation of the mixing behaviour of a full-scale biogas plant using biodegradable tracers. Biomass Bioenergy 139, 105613. https://doi.org/10.1016/j.biombioe.2020.105613 . Ohnmacht, B., Kress, P., Parrales, J.K.H., Lemmer, A., 2019. Investigating internal biological desulfuri- sation through dosage with ambient air. Landtechnik 74, 156–166. https://doi.org/10.15150/lt.2019.3224 . Ong, H.K., Greenfield, P.F., Pullammanappallil, P.C., 2002. Effect of Mixing on Biomethanation of Cattle-Manure Slurry. Environ. Technol. 23, 1081–1090. https:// doi.org/10.1080/09593332308618330 . Kress, Philipp, N¨agele, Hans-Joachim, Lemmer, Andreas, Kolb, Bastian, 2020. Flow velocities and flow profiles in a thoroughly mixed biogas fermenter. Agric. Eng. 75, 35–50. https://doi.org/10.15150/lt.2020.3230 . Schneider, N., 2018. Density and Viscosity of Biomass from Agricultural Biogas Plants. Dissertation. Ruhr Universit¨at Bochum. Singh, B., Szamosi, Z., Sim´enfalvi, Z., 2020. Impact of mixing intensity and duration on biogas production in an anaerobic digester: a review. Crit. Rev. Biotechnol. 40, 508–521. https://doi.org/10.1080/07388551.2020.1731413 . Stafford, D.A., 1982. The effects of mixing and volatile fatty acid concentrations on anaerobic digester performance. Biomass 2, 43–55. https://doi.org/10.1016/0144- 4565(82)90006-3 . Stroot, P.G., McMahon, K.D., Mackie, R.I., Raskin, L., 2001. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-I. digester performance. Water Res. 35, 1804–1816. https://doi.org/10.1016/S0043-1354(00) 00439-5 . Subramanian, B., Pagilla, K.R., 2014. Anaerobic digester foaming in full-scale cylindrical digesters - Effects of organic loading rate, feed characteristics, and mixing. Bioresour. Technol. 159, 182–192. https://doi.org/10.1016/j.biortech.2014.02.089 . Sulaiman, A., Hassan, M.A., Shirai, Y., Abd-Aziz, S., Tabatabaei, M., Busu, Z., Yacob, S., 2009. The effect of mixing on methane production in a semi-commercial closed digester tank treating palm oil mill effluent. Aust. J. Basic Appl. Sci. 3, 1577–1583 . Svensson, K., Paruch, L., Gaby, J.C., Linjordet, R., 2018. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste. Bioresour. Technol. 269, 276–284. https://doi. org/10.1016/j.biortech.2018.08.096 . Twidell, J., Weir, T., 2015. Renewable Energy Resources. Taylor & Francis url:https:// books.google.de/books?id=CYMcBgAAQBAJ . Valijanian, E., Tabatabaei, M., Aghbashlo, M., Sulaiman, A., Chisti, Y., 2018. Biogas Production Systems. Springer International Publishing, Cham. chapter 4. pp. 95–116. url:https://doi.org/10.1007/978-3-319-77335-3_4, doi: 10.1007/978-3- 319-77335-3_4. Vavilin, V.A., Angelidaki, I., 2005. Anaerobic degradation of solid material: Importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol. Bioeng. 89, 113–122. https://doi.org/10.1002/bit.20323 . Verhoff, F.H., Tenney, M.W., Echelberger, W.F., 1974. Mixing in anaerobic digestion. Biotechnol. Bioeng. 16, 757–770. https://doi.org/10.1002/bit.260160606 . Download 1.63 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling