Amaliy mashg’ulot mavzulari(barcha)
|
soat
|
I-mavzu(bob). Matritsa va determinantlar
|
1.1
|
Determenantlar va ularning xossalari.
|
2
|
1.2
|
Matritsalar. Matritsalar ustida amallar.
|
2
|
1.3
|
Teskari matritsa. Matritsaning rangi.
|
2
|
II-mavzu. Chiziqli tenglamalar sistemasi
|
2.1
|
Ikki va uch noma’lumli chiziqli tenglamalar sistemasi. Kramer
formulalari.
|
2
|
2.2
|
Chiziqli tenglamalar sistemasini matritsalar yordamida yechish.
|
2
|
2.3
|
Umumiy ko’rinishdagi tenglamlar sistemasi.Chiziqli tenglamalar
sistemasini Gauss usuli bilan yechish.
|
2
|
III-mavzu. Analitik geometriya elementlari
|
3.1
|
Tekislikda analitik geometriya. Kesmani berilgan nisbatda bo’lish.
Ikki nuqta orasidagi masofani topish
|
2
|
3.2
|
To’g’ri chiziq va uning tenglamalari.
|
2
|
3.3
|
To’g’ri chiziqlar va ular orasidagi burchak. Berilgan nuqtadan
to’g’ri chiziqqacha bo’lgan masofani topish.
|
2
|
3.4
|
Ikkinchi tartibli chiziq va uning tenglamasi. Aylana, ellips.
|
2
|
3.5
|
Ikkinchi tartibli egri chiziqlar: giperbola va parabola.
|
2
|
3.6
|
Fazoda tekislik va to’g’ri chiziq tenglamalari.
|
2
|
IV-mavzu. Sonlar ketma ketligi
|
4.1
|
Sonlar ketma-ketligi va uning limiti.
|
2
|
V-mavzu. Funksiya tushunchasi
|
5.1
|
Funksiya tushunchasi. Funksiyaning asosiy xossalari.
|
2
|
5.2
|
Funksiya limiti. Birinchi va ikkinchi ajoyib limitlar.
|
2
|
5.3
|
Funksiyaning uzluksizligi. Uzluksiz funksiyalarning xossalari.
|
2
|
VI-mavzu. Differentsial hisob va uning tadbiqlari
|
6.1
|
Hosila tushunchasi. Elementar funksiyalarning hosilalari. Hosilani
hisoblashning sodda qoidalari.
|
2
|
6.2
|
Funksiya differensiali, yuqori tartibli hosila va differensiallar.
|
2
|
6.3
|
Funksiya hosilasining tatbiqlari. Lopital qoidasi.
|
2
|
VII-mavzu. Integral hisob va uning tadbiqlari
|
7.1
|
Boshlang’ich funksiya va aniqmas integral. Aniqmas integral
jadvali. Aniqmas integralning ba’zi bir xossalari.
|
2
|
7.2
|
O’zgaruvchilarni almashtirish va bo’laklab integrallash.
|
2
|
7.3
|
Ratsional kasrlar,ularni integrallash.
|
2
|
7.4
|
Triganometrik funksiyalarni integrallash
|
2
|
7.5
|
Aniq integral. Aniq integralning asosiy xossalari. Aniq
integraldao’zgaruvchilarni almashtirish va bo’laklab integrallash.
|
2
|
7.6
|
Aniq integralning tadbiqlari. Tekis figuralarning yuzalarini va
hajmlarini hisoblash.
|
2
|
IX-mavzu. Differensial tenglamalar
|
9.1
|
Masalaning qo’yilishi. Ta’riflar. Birinchi tartibli differensial
tenglamalar. Mavjudlik va yagonalik teoremalari.
|
2
|
9.2
|
O’zgaruvchilari ajralgan va ajralmagan tenglamalar. Birinchi tartibli
bir jinsli tenglamalar.
|
2
|
9.3
|
Birinchi tartibli chiziqli tenglamalar. Bernulli tenglamasi.
|
2
|
9.4
|
O’zgarmas koeffitsentli 2-tartibli bir jinsli chiziqli tenglamalar.
|
2
|
9.5
|
Yuqori tartibli differensial tenglamalar.
|
2
|
X-mavzu. Qatorlar
|
10.1
|
Qator. Qatorlarning xossasi. Qator yaqinlashishining zaruriy sharti.
|
2
|
10.2
|
Musbat hadli qatorlar, ularni taqqoslash. Dalamber va Koshi
alomatlari.Qator yaqinlashishining integral alomati.
|
2
|
XI-mavzu. Ehtimollar nazariyasi
|
11.1
|
Ehtimolning ta’riflari. Hodisalar ustida amallar.
|
2
|
11.2
|
Matematik kutilma. Dispersiya.
|
2
|
|
Jami:
|
68
|
Mustaqil ta’lim tashkil etishning shakli va mazmuni.
"Oliy matematika" bo’yicha talabaning mustaqil ta’limi shu fanni o’rganish jarayonining tarkibiy qismi bo’lib, uslubiy va axborot resurslari bilan to’la ta’minlangan.
Talabalar auditoriya mashg’ulotlarida professor-o’qituvchilarning ma’ruzasini tinglaydilar, misol va masalalar yechadilar. Auditoriyadan tashqarida talaba darslarga tayyorlanadi, adabiyotlarni konspekt qiladi, uy vazifa sifatida berilgan misol va masalalarni yechadi. Bundan tashqari ayrim mavzularni kengroq o’rganish maqsadida qo’shimcha adabiyotlarni o’qib referatlar tayyorlaydi hamda mavzu bo’yicha testlar yechadi. Mustaqil ta’lim natijalari reyting tizimi asosida baholanadi.
Uyga vazifalarni bajarish, qo’shimcha darslik va adabiyotlardan yangi bilimlarni mustaqil o’rganish, kerakli ma’lumotlarni izlash va ularni topish yo’llarini aniqlash, internet tarmoqlaridan foydalanib ma’lumotlar to’plash va ilmiy izlanishlar olib borish, ilmiy to’garak doirasida yoki mustaqil ravishda ilmiy manbalardan foydalanib ilmiy maqola va ma’ruzalar tayyorlash kabilar talabalarning darsda olgan bilimlarini chuqurlashtiradi, ularning mustaqil fikrlash va ijodiy qobiliyatini rivojlantiradi. Shuning uchun ham mustaqil ta’limsiz o’quv faoliyati samarali bo’lishi mumkin emas.
Uy vazifalarini tekshirish va baholash amaliy mashg’ulot olib boruvchi o’qituvchi tomonidan, konspektlarni va mavzuni o’zlashtirish darajasini tekshirish va baholash esa ma’ruza darslarini olib boruvchi o’qituvchi tomonidan har darsda amalga oshiriladi.
"Oliy matematika" fanidan mustaqil ish majmuasi fanning barcha mavzularini qamrab olgan va quyidagi 13 ta katta mavzu ko’rinishida shakllantirilgan.
Mustaqil ishlash uchun mavzular. Jami 130 soat
№
|
Mustaqil ta’lim mavzulari
|
Bajariladigan topshiriqlar
|
Hajmi (soatda)
|
1
|
To’plamlar nazariyasi
elementlari
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
2
|
Matritsalar va determinantlarni
tatbiqiy masalalarda qo’llanilishi
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
3
|
Vektorlar va ularning tatbiqlari
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
4
|
Parametrga bog’liq funksiyalar
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
5
|
Funksiya hosilasi va uning
tatbiqlari
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
6
|
Hosilalar yordamida funksiyani
to’liq tekshirish
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
7
|
Aniq integral va uning tatbiqlari
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
8
|
Sonli va funksional qatorlar
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
9
|
Ko’p o’zgaruvchili funksiyalar
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
10
|
Karrali, egri chiziqli va sirt
integrallarini tatbiqlari
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
11
|
Birinchi tartibli differensial
tenglamalar
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
12
|
Yuqori tartibli differensial
tenglamalar
|
Adabiyotlardan konspekt qilish
individual topshiriqlarni bajarish
|
10
|
13
|
Ehtimollar nazariyasi va matematik statistikaning tatbiqiy
masalalari
|
Adabiyotlardan konspekt qilish individual topshiriqlarni bajarish
|
10
|
|
Jami
|
|
130
|
Dasturning informatsion uslubiy ta’minoti
Mazkur fanni o’qitish jarayonida ta’limning zamonaviy metodlari, pedagogik va axborot-kommunikasiya texnologiyalarini qo’llash nazarda tutilgan:
chiziqli algebra nazariyasi asoslari, matrisalar va chiziqli tenglamalar sistemasini yechishga bag’ishlangan mavzular zamonaviy kompyuter texnologiyalari yordamida prezentasiya va elektron-didaktik texnologiyalaridan foydalanilgan holda o’tkaziladi;
bir va ko’p o’zgaruvchi funksiyalar, ularning differensial va integral hisoblariga bag’ishlangan amaliy mashg’ulotlarida kichik guruhlar musobaqalari, guruhli fikrlash pedagogik texnologiyalarini qo’llash nazarda tutiladi.
Baholashni 5 baholik shkaladan 100 ballik shkalaga o’tkazish
JADVALI
5 baholik shkala
|
100 ballik shkala
|
|
5 baholik shkala
|
100 ballik
shkala
|
|
5 baholik shkala
|
100 ballik shkala
|
5,00 - 4,96
|
100
|
4,30 - 4,26
|
86
|
3,60 - 3,56
|
72
|
4,95 - 4,91
|
99
|
4,25 - 4,21
|
85
|
3,55 - 3,51
|
71
|
4,90 - 4,86
|
98
|
4,20 - 4,16
|
84
|
3,50 - 3,46
|
70
|
4,85 - 4,81
|
97
|
4,15 - 4,11
|
83
|
3,45 - 3,41
|
69
|
4,80 - 4,76
|
96
|
4,10 - 4,06
|
82
|
3,40 - 3,36
|
68
|
4,75 - 4,71
|
95
|
4,05 - 4,01
|
81
|
3,35 - 3,31
|
67
|
4,70 - 4,66
|
94
|
4,00 - 3,96
|
80
|
3,30 - 3,26
|
66
|
4,65 - 4,61
|
93
|
3,95 - 3,91
|
79
|
3,25 - 3,21
|
65
|
4,60 - 4,56
|
92
|
3,90 - 3,86
|
78
|
3,20 - 3,16
|
64
|
4,55 - 4,51
|
91
|
3,85 - 3,81
|
77
|
3,15 - 3,11
|
63
|
4,50 - 4,46
|
90
|
3,80 - 3,76
|
76
|
3,10 - 3,06
|
62
|
4,45 - 4,41
|
89
|
3,75 - 3,71
|
75
|
3,05 - 3,01
|
61
|
4,40 - 4,36
|
88
|
3,70 - 3,66
|
74
|
3,00
|
60
|
4,35 - 4,31
|
87
|
3,65 - 3,61
|
73
|
3,0 dan kam
|
60 dan kam
|
Oliy ta’limda talabalar o’zlashtirishini baholash tizimlarini qiyosiy taqqoslash jadvali
Taklif etilayotgan O’zbekiston tizimi
|
Rossiya tizimi (MDU)
|
Evropa kredit transfer tizimi (ECTS-European Credit Transfer System)
|
Amerika tizimi(A-F)
|
Britaniya tizimi (%)
|
Yaponiya tizimi (%)
|
Koreya tizimi (%)
|
O’zbekiston tizimi (%)
|
5
|
5
|
A
|
AQ
|
70-100
|
80-100
|
90-100
|
90-100
|
A
|
A-
|
65-69
|
4
|
4
|
B
|
BQ
|
60-64
|
70-79
|
80-89
|
70-89,9
|
C
|
B
|
50-59
|
B-
|
3
|
3
|
D
|
CQ
|
45-49
|
60-69
|
70-79
|
60-69,9
|
E
|
C
|
40-44
|
C-
|
DQ
|
60-69
|
D
|
D-
|
2
|
2
|
FX
|
F
|
0-39
|
0-59
|
0-59
|
0-59,9
|
|
Tavsiya etilgan adabiyotlar ro’yxati Asosiy adabiyotlar
Баврин И. И.Высшая математика для химиков, биологов и медиков: учебник и практикум для прикладного бакалавриата.2-е изд., испр. и доп. М.: Издательство Юрайт, 2016. — 329 с.
Минорский В. П.Сборник задач по высшей математике: учебное пособие для втузов. 15-е изд. М.: ФИЗМАТЛИТ, 2010. — 336 с.
Jabborov N. M., Aliqulov E. O., Axmedova Q. S. Oliy matematika, 1, 2 parts.Qarshi, 2010.
Shoimqulov B. A., Tuychiyev T. T., Djumaboev D. X. Matematik analizdan mustaqil ishlar. T. “O’zbekiston faylasuflari milliy jamiyati”, 2008.
2. Qo’shimcha adabiyotlar
Sadullaev A., Mansurov X.T., Xudoyberganov G., Varisov A.K., G‘ulomov R. Matematik analiz kursidan misol va masalalar to‘plami, 1, 2- qismlar. Тoshkent, 1995.
Кремер Н.Ш. Теория вероятности и математическая статистика.Москва, 2004.
Soatov Y.U. Oliy matematika. Тoshkent. 1993.
Лунгу К.Н. и др., Сборник задач по высшей математике 1,2 ч., М.,
«Айрис пресс», 2007 г.
Скатецкий В.Г., Свиридов Д.В., Яшкин В.И., Математические методы в химии, «ТетраСистемс», 2006 г.
Д. Письменный, Конспект лекции по высшей математике, 1,2 ч. М.,
«Айрис пресс», 2005 г.
Ochilov Z.H., Ismoilov A.S., Burxanov Sh.M. Matematika biologlar uchun amaliy mashg’ulot, 1-qism.Samarqand, 2018.
3. Internet manbalari
www.natlib.uz
www.ziyonet.uz
www.mcce.ru
Do'stlaringiz bilan baham: |