Elektron sog'liqni saqlash yozuvlari uchun o'zgaruvchan tartibga solinadigan grafiklarga asoslangan vakillikni o'rganish


Download 245.34 Kb.
Sana13.04.2023
Hajmi245.34 Kb.
#1350896
Bog'liq
Azizbek Abdirimov11


Elektron sog'liqni saqlash yozuvlari uchun o'zgaruvchan tartibga solinadigan grafiklarga asoslangan vakillikni o'rganish


Kirish


Ushbu maqolada biz yashirin tibbiy kontseptsiya tuzilmalarini keng ma'lumot manbalariga, shu jumladan qisqa muddatli ICU ma'lumotlariga va uzoq muddatli ambulatoriya klinik ma'lumotlariga o'rganish qobiliyatini umumlashtirish uchun yangi grafik asosidagi modelni ishlab chiqamiz. Biz tugun uchun variatsion tartibga solishni kiritamiz. tasviriy o'rganish, grafik asosidagi modellarda o'z-o'ziga e'tiborning etishmasligi va haqiqiy dunyo shovqinli ma'lumotlar manbalaridan bilim grafigini qo'lda qurish qiyinchiliklarini hal qilish. Bizning ishimizning yangiligi tugun ko'rinishlarini tartibga solish orqali GNNda diqqat og'irliklarini o'rganishni kuchaytirishdan iborat. Turli xil bashoratli vazifalarda yaxshi natijalarga erishishdan tashqari, biz singular qiymat tahlilidan foydalangan holda grafik neyron tarmoqlarida variatsion tartibga solishning ta'sirini izohlaymiz,

Model tayyorlash

Old shartlar


Kerakli paketlarni python3.6 muhitiga buyruq orqali o'rnatish mumkin:


pip3 install -r requirements.txt

Trening modellari uchun Cuda 10.0 bilan Nvidia GPU talab qilinadi.


Ma'lumotlar


Ma'lumotlar to'plamlari uchun tibbiy kodni chiqaradigan dastlabki ishlov berish vositalari ma'lumotlarga kiritilgan . Buyruqni bajaring:
python3 preprocess_{dataset}.py --input_path {dataset_path} --output_path {storage_path}

Poyezd


EHR uchun GNN kasallik natijalarini bashorat qilish bo'yicha buyruqni bajarish orqali o'qitilishi mumkin:
python3 train.py --data_path {storage_path} --embedding_size 512 --result_path {model_path}

Arxitektura







num_samples = 1000


# generate 1-d EHR records for patients
x = (np.random.rand(num_samples, 133279) < 0.0005).astype('int')
x[:num_samples//3,-6] = 1
x[num_samples//3:num_samples//3 * 2, -3] = 1
x[num_samples//3 * 2:, -2] = 1
sp_x = sparse.csr_matrix(x)
pickle.dump(sp_x, open('preprocess_x.pkl','wb'))
# randomly generate outcome lables for patients
y = np.random.rand(num_samples) < 0.01
pickle.dump(y, open('y_bin.pkl','wb'))

# random split train, validation and test set


rand_idx = np.random.rand(num_samples)
train_idx = np.where(rand_idx < 0.7)[0]
val_idx = np.where((rand_idx >= 0.7) & (rand_idx < 0.8))[0]
test_idx = np.where(rand_idx >= 0.8)[0]
pickle.dump(train_idx, open('train_idx.pkl','wb'))
pickle.dump(val_idx, open('val_idx.pkl','wb'))
pickle.dump(test_idx, open('test_idx.pkl','wb'))



neg = np.where(y[test_idx] == 0)[0]


neg_young = np.intersect1d(np.where(np.array(x[train_idx][:,-7:-3].sum(axis = 1)).ravel() == 1)[0], neg)
pickle.dump(neg_young, open('neg_young.pkl','wb'))

Model.py
import torch


import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import copy

if torch.cuda.is_available():


device = 'cuda'
else:
device = 'cpu'
print(device)

def clones(module, N):


return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

def clone_params(param, N):


return nn.ParameterList([copy.deepcopy(param) for _ in range(N)])

class LayerNorm(nn.Module):


def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps

def forward(self, x):


mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

class GraphLayer(nn.Module):


def __init__(self, in_features, hidden_features, out_features, num_of_nodes,


num_of_heads, dropout, alpha, concat=True):
super(GraphLayer, self).__init__()
self.in_features = in_features
self.hidden_features = hidden_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.num_of_nodes = num_of_nodes
self.num_of_heads = num_of_heads
self.W = clones(nn.Linear(in_features, hidden_features), num_of_heads)
self.a = clone_params(nn.Parameter(torch.rand(size=(1, 2 * hidden_features)), requires_grad=True), num_of_heads)
self.ffn = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU()
)
if not concat:
self.V = nn.Linear(hidden_features, out_features)
else:
self.V = nn.Linear(num_of_heads * hidden_features, out_features)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
if concat:
self.norm = LayerNorm(hidden_features)
else:
self.norm = LayerNorm(hidden_features)

def initialize(self):


for i in range(len(self.W)):
nn.init.xavier_normal_(self.W[i].weight.data)
for i in range(len(self.a)):
nn.init.xavier_normal_(self.a[i].data)
if not self.concat:
nn.init.xavier_normal_(self.V.weight.data)
nn.init.xavier_normal_(self.out_layer.weight.data)

def attention(self, linear, a, N, data, edge):


data = linear(data).unsqueeze(0)
assert not torch.isnan(data).any()
# edge: 2*D x E
h = torch.cat((data[:, edge[0, :], :], data[:, edge[1, :], :]), dim=0)
data = data.squeeze(0)
# h: N x out
assert not torch.isnan(h).any()
# edge_h: 2*D x E
edge_h = torch.cat((h[0, :, :], h[1, :, :]), dim=1).transpose(0, 1)
# edge: 2*D x E
edge_e = torch.exp(self.leakyrelu(a.mm(edge_h).squeeze()) / np.sqrt(self.hidden_features * self.num_of_heads))
assert not torch.isnan(edge_e).any()
# edge_e: E
edge_e = torch.sparse_coo_tensor(edge, edge_e, torch.Size([N, N]))
e_rowsum = torch.sparse.mm(edge_e, torch.ones(size=(N, 1)).to(device))
# e_rowsum: N x 1
row_check = (e_rowsum == 0)
e_rowsum[row_check] = 1
zero_idx = row_check.nonzero()[:, 0]
edge_e = edge_e.add(
torch.sparse.FloatTensor(zero_idx.repeat(2, 1), torch.ones(len(zero_idx)).to(device), torch.Size([N, N])))
# edge_e: E
h_prime = torch.sparse.mm(edge_e, data)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime.div_(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
return h_prime

def forward(self, edge, data=None):


N = self.num_of_nodes
if self.concat:
h_prime = torch.cat([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=1)
else:
h_prime = torch.stack([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=0).mean(
dim=0)
h_prime = self.dropout(h_prime)
if self.concat:
return F.elu(self.norm(h_prime))
else:
return self.V(F.relu(self.norm(h_prime)))

class VariationalGNN(nn.Module):


def __init__(self, in_features, out_features, num_of_nodes, n_heads, n_layers,


dropout, alpha, variational=True, none_graph_features=0, concat=True):
super(VariationalGNN, self).__init__()
self.variational = variational
self.num_of_nodes = num_of_nodes + 1 - none_graph_features
self.embed = nn.Embedding(self.num_of_nodes, in_features, padding_idx=0)
self.in_att = clones(
GraphLayer(in_features, in_features, in_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=True), n_layers)
self.out_features = out_features
self.out_att = GraphLayer(in_features, in_features, out_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=False)
self.n_heads = n_heads
self.dropout = nn.Dropout(dropout)
self.parameterize = nn.Linear(out_features, out_features * 2)
self.out_layer = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
self.none_graph_features = none_graph_features
if none_graph_features > 0:
self.features_ffn = nn.Sequential(
nn.Linear(none_graph_features, out_features//2),
nn.ReLU(),
nn.Dropout(dropout))
self.out_layer = nn.Sequential(
nn.Linear(out_features + out_features//2, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
for i in range(n_layers):
self.in_att[i].initialize()

def data_to_edges(self, data):


length = data.size()[0]
nonzero = data.nonzero()
if nonzero.size()[0] == 0:
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
if self.training:
mask = torch.rand(nonzero.size()[0])
mask = mask > 0.05
nonzero = nonzero[mask]
if nonzero.size()[0] == 0:
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
nonzero = nonzero.transpose(0, 1) + 1
lengths = nonzero.size()[1]
input_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)

nonzero = torch.cat((nonzero, torch.LongTensor([[length + 1]]).to(device)), dim=1)


lengths = nonzero.size()[1]
output_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)
return input_edges.to(device), output_edges.to(device)

def reparameterise(self, mu, logvar):


if self.training:
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
else:
return mu

def encoder_decoder(self, data):


N = self.num_of_nodes
input_edges, output_edges = self.data_to_edges(data)
h_prime = self.embed(torch.arange(N).long().to(device))
for attn in self.in_att:
h_prime = attn(input_edges, h_prime)
if self.variational:
h_prime = self.parameterize(h_prime).view(-1, 2, self.out_features)
h_prime = self.dropout(h_prime)
mu = h_prime[:, 0, :]
logvar = h_prime[:, 1, :]
h_prime = self.reparameterise(mu, logvar)
mu = mu[data, :]
logvar = logvar[data, :]
h_prime = self.out_att(output_edges, h_prime)
if self.variational:
return h_prime[-1], 0.5 * torch.sum(logvar.exp() - logvar - 1 + mu.pow(2)) / mu.size()[0]
else:
return h_prime[-1], torch.tensor(0.0).to(device)

def forward(self, data):


# Concate batches
batch_size = data.size()[0]
# In eicu data the first feature whether have be admitted before is not included in the graph
if self.none_graph_features == 0:
outputs = [self.encoder_decoder(data[i, :]) for i in range(batch_size)]
return self.out_layer(F.relu(torch.stack([out[0] for out in outputs]))), \
torch.sum(torch.stack([out[1] for out in outputs]))
else:
outputs = [(data[i, :self.none_graph_features],
self.encoder_decoder(data[i, self.none_graph_features:])) for i in range(batch_size)]
return self.out_layer(F.relu(
torch.stack([torch.cat((self.features_ffn(torch.FloatTensor([out[0]]).to(device)), out[1][0]))
for out in outputs]))), \
torch.sum(torch.stack([out[1][1] for out in outputs]), dim=-1)
Download 245.34 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling