Kiberxavfsizlik” fakulteti 713-21- guruh cry
Download 55.97 Kb.
|
SHamsiddin 3
- Bu sahifa navigatsiya:
- patok talabasi XUSHVAQTOV SHAMSIDDINning “Mashinali oqitish kirish” fanidan tayyorlagan 3-AMALIY ISHI
- TOSHKENT - 2023 3-amaliy ish. 17-variant
MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI “KIBERXAVFSIZLIK” FAKULTETI 713-21- guruh CRY002 - 1 - patok talabasi XUSHVAQTOV SHAMSIDDINning “Mashinali oqitish kirish” fanidan tayyorlagan 3-AMALIY ISHI Topshirdi: Xushvaqtov Sh. Tekshirdi: Ochilov M. TOSHKENT - 2023 3-amaliy ish. 17-variant Davlatlarni sinflashtirish 60 3 4 import pandas as pd import numpy as np df = pd.read_csv('/content/Shamsiddin.csv') df.head() X = df.iloc[:, 1:-2].values Y = df.iloc[:, -1].values X
[2, '9976', 3.0], [4, '9599', 30.0], [5, '9519.4', 136.0], [8, '8515.7', 22.0], [6, '7692', 2.0], [3, '2780', 14.0], [4, '2724.9', 5.0], [4, '2381.7', 16.0], [3, '2345.4', 13.0], [1, '2149.7', 15.0], [2, '1972.5', 53.0], [4, '1904.5', 13.0], [5, '1886', 126.0], [8, '1759.5', 3.0], [6, '1,648,000', 41.0], [3, '1,566,6', 24.0], [4, '1,285,220', 21.0], [4, '1,284,000', 7.0], [8, '1,267,000', 9.0], [6, '1,246,700', 8.0], [3, '1,240,000', 9.0], [4, '1,219,912', 36.0], [4, '1,138,910', 37.0], [3, '1,127,127', 64.0], [1, '1,98,580', 8.0], [2, '1,30,700', 2.0], [4, '1,1,450', 77.0], [5, '945.087', 38.0], [8, '923.768', 139.0], [6, '912.05', 29.0], [3, '881.913', 202.0], [4, '825.418', 2.0], [4, '801.59', 24.0], [8, '780.58', 89.0], [6, '756.95', 21.0], [3, '752.614', 14.0], [4, '647.5', 46.0], [4, '644.329', 46.0], [3, '644.329', 13.0], [4, '622.984', 6.0], [4, '603.7', 78.0], [8, '600.37', 2.0], [6, '587.04', 30.0], [3, '582.65', 58.0], [4, '527.97', 39.0], [4, '514', 127.0], [3, '504.782', 85.0], [6, '488.1', 10.0], [3, '475.44', 34.0], [4, '462.84', 11.0], [4, '449.964', 20.0], [3, '448.9', 79.0], [1, '446.55', 73.0], [2, '437.072', 59.0], [4, '406.75', 15.0], [5, '390.58', 32.0], [8, '377.835', 337.0], [6, '357.021', 230.0]], dtype=object) Y array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) [9] 0 сек. import matplotlib.pyplot as plt x = X[:,0]
setosa_x = x[:50] setosa_y = y[:50] versicolor_x = x[50:100] versicolor_y = y[50:100] virginica_x = x[100:] virginica_y = y[100:] plt.figure(figsize=(8,6)) plt.xlabel('SepalLengthCm') plt.ylabel('PetalLengthCm') plt.scatter(setosa_x,setosa_y,marker='s',color='green',label='Setosa') plt.scatter(versicolor_x,versicolor_y,marker='o',color='red',label='Versicolor') plt.scatter(virginica_x,virginica_y,marker='*',color='orange',label='Virginica') plt.legend() plt.show() # Import Library for splitting data from sklearn.model_selection import train_test_split # Creating Train and Test datasets X_train, X_test, y_train, y_test = train_test_split(X,Y, random_state = 42, test_size = 0.15) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # KNN
classifier = KNeighborsClassifier(n_neighbors =3)
y_pred_test = classifier.predict(X_test) from sklearn.metrics import classification_report, confusion_matrix, accuracy_score print(classification_report([0,1,0,1,2,0,1,2,0,0], [0,1,1,1,0,0,1,2,0,1])) result = confusion_matrix(y_test, y_pred_test)
result1 = classification_report(y_test, y_pred_test) print("Classification Report:",) print (result1) result2 = accuracy_score(y_test,y_pred_test) print("Accuracy:",result2) #SVM
from sklearn.svm import SVC clf = SVC(kernel='linear') clf.fit(X_train,y_train)
y_pred_test = classifier.predict(X_test) result = confusion_matrix(y_test, y_pred_test)
result1 = classification_report(y_test, y_pred_test) print("Classification Report:",) print (result1) result2 = accuracy_score(y_test,y_pred_test) print("Accuracy:",result2) # DT
clf = DecisionTreeClassifier() clf.fit(X_train,y_train) y_pred_test = classifier.predict(X_test) result = confusion_matrix(y_test, y_pred_test)
result1 = classification_report(y_test, y_pred_test) print("Classification Report:",) print (result1) result2 = accuracy_score(y_test,y_pred_test) print("Accuracy:",result2) #RF
clf = RandomForestClassifier(random_state=1) clf.fit(X_train,y_train) y_pred_test = classifier.predict(X_test) result = confusion_matrix(y_test, y_pred_test)
result1 = classification_report(y_test, y_pred_test) print("Classification Report:",) print (result1) result2 = accuracy_score(y_test,y_pred_test) print("Accuracy:",result2) plt.figure(figsize=(6,3)) plt.title('Sinflashtirish algoritmlarning solishtirma grafigi') plt.bar(['KNN','SVM','Decision Tree','Random Forest'],[95,64,100,2],color='r') plt.ylabel("Aniqlik") plt.grid() plt.show() a=np.array([1,2]) b=np.array([3,2]) a.dot(b) Download 55.97 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling