Erkli sinovlar ketma-ketligi. Limit teoremalar


Muavr-Laplasning integral teoremasi


Download 10.73 Kb.
bet2/2
Sana28.10.2023
Hajmi10.73 Kb.
#1730226
1   2
Bog'liq
Erkli sinovlar ketma-ketligi. Limit teoremalar-fayllar.org (1)

Muavr-Laplasning integral teoremasi.

Har birida hodisaning ro‘y berish ehtimoli p (0<p<1) ga teng bo‘lgan n ta bog‘liq bo‘lmagan tajribada hodisaning kamida marta va ko‘pi bilan marta ro‘y berish ehtimoli (n yetarlicha katta bo‘lganda) taqriban ga teng. Bu yerda , . - funksiya Laplas funksiyasi deyiladi.



x ning musbat qiymatlari uchun Laplas funksiyasining qiymatlari 2-ilovadagi jadvalda keltirilgan. x>5 bo‘lsa, Ф(x)=0,5 deb olinadi. Ф(x) funksiya toq funksiyadir. Shuning uchun manfiy qiymatlarda buni hisobga olish kerak bo‘ladi.
2-misol. Fermer xo‘jaliklariga o‘rnatilgan elektr hisoblagichlarning buzilmasdan ishlash ehtimoli o‘zgarmas bo‘lib, p=0,8 ga teng. O‘rnatilgan 100 dona hisoblagichdan kamida 75 tasi va ko‘pi bilan 90 tasining buzilmasdan ishlash ehtimolini toping.

Yechish. Masala shartiga ko‘ra n=100; k1=75; k2=90; p=0,8; q=0,2 ga teng. n yetarlicha katta bo‘lgani uchun Laplasning integral teoremasidan foydalanamiz. larni hisoblaymiz:






Laplas funksiyasining toq ekanligidan quyidagini hosil qilamiz:


P100(75;90)=Ф(2,5)-Ф(-1,25)=Ф(2,5)+Ф(1,25). Jadvaldan Ф(2,5)=0,4938; Ф(1,25)=0,3944 ni topamiz. Laplasning integral teoremasiga ko‘ra biz qidirayotgan ehtimollik P100(75;90)= 0,4938+0,3944=0,8882 ga teng bo‘ladi.
Eslatma. n≤20 da Bernulli formulasi, n>20, p0,02 da Puasson formulasi, n>20, 0,02< p<0,98 da Muavr - Laplas formulalari qo‘llaniladi.


Hodisa ro‘y berishining eng katta ehtimolli soni.

Aniqlangan p ehtimolda Pn(k) ehtimol k ning funksiyasi ekani ravshan. Agar ihtiyoriy uchun ; bo‘lsa, u holda son hodisa ro‘y berishining eng katta ehtimolli soni deyiladi.


Eng katta ehtimolli son quyidagi qo‘sh tengsizlikdan aniqlanadi.



bu yerda:
a) agar np-q son kasr bo‘lsa, u holda bitta eng katta ehtimolli son mavjud;
b) agar np-q son butun bo‘lsa, ikkita eng katta ehtimolli sonlar va mavjud;

c) agar np butun son bo‘lsa, bo‘ladi.



Izoh. p yetarlicha katta bo‘lganda ning qiymati dan aniqlanadi.
Mustahkamlash uchun savollar:
1. Binomial sxema deganda nimani tushunasiz?
2. Erkli tajribalar qanday aniqlanadi?
3. Bernulli teoremasi qachon qo‘llaniladi?
4. Puasson teoremasini ta’riflang.
5. Muavr-Laplasning lokal teoremasi qanday shartlarda bajariladi?
6. Muavr-Laplasning integral teoremasi qanday hollarda qo‘llaniladi?
7. Eng katta ehtimollik son qanday topiladi?

8. Bog‘liqmas sinovlar ta’rifini ayting.



9. Puasson teoremasi qanday shartlarda bajariladi?
http://fayllar.org
Download 10.73 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling