Физика конденсированного состояния


Download 200.89 Kb.
bet10/10
Sana24.03.2023
Hajmi200.89 Kb.
#1291420
1   2   3   4   5   6   7   8   9   10
Bog'liq
wikipediya KHF. ru

Квантовые вычисления[править | править код]
Основная статья: Квантовый компьютер
В квантовых вычислениях информация представлена квантовыми битами или кубитами. Кубиты могут подвергаться декогеренции до завершения вычислений и терять сохранённую информацию. Эта серьёзная проблема ограничивает практическое применение квантовых вычислений[87]. Для решения этой проблемы предлагается несколько многообещающих подходов в физике конденсированных сред, в том числе кубиты на основе джозефсоновских контактовспинтронные кубиты с использованием магнитных материалов или топологические неабелевы анионы из состояний дробного квантового эффекта Холла[88]. Несмотря на то, что квантовые компьютеры должны содержать тысячи кубитов для практически полезных вычислений, но некоторые результаты позволяют сделать выводы о реализации квантового превосходства на системе из 49 кубитов, то есть фактически решить задачу, которая оказывается слишком сложной для классических компьютеров[89]. Другой областью применения кубитов является моделирование реальных квантовых систем в так называемом квантовом симуляторе предложенный Юрием Маниным и Ричардом Фейнманом в начале 80-х годов XX века[90][91]. Вместо исследования оригинальной квантовой системы можно рассмотреть её реализацию посредством кубитов, которые воспроизводят те же физические эффекты, но в более контролируемой системе. Таким образом реализован изолятор Мотта в системе Бозе — Хаббарда с управляемой диссипацией и исследованы фазовые переходы в решётках сверхпроводящих резонаторов, связанных с кубитами[92][93].
Двумерные материалы[править | править код]
Основная статья: Двумерный кристалл
Только в 2004 году учёные из Манчестерского университета создали первый полевой транзистор из графена — двумерной модификации углерода[94]. Гибкость управления двумерными материалами и их уникальные свойства привлекла многих исследователей, и, таким образом, семейство двумерных материалов быстро увеличивается. Двумерные материалы демонстрируют всем известные эффекты, такие как ферромагнетизм[95], сверхпроводимость[96][97], сегнетоэлектричество[98], но возможность влиять на свойства двумерного материала посредством эффекта поля открывает широкие перспективы для практических применении в электронике[99]. Известно, что при контакте сверхпроводника и обычного металла куперовские пары проникают в нормальный металл, то есть нормальный металл приобретает свойства сверхпроводника — этот эффект называется эффектом близости. Для двумерных материалов свойства близколежащих материалов будь то сверхпроводник, ферромагнетик или материал с сильным спин-орбитальным взаимодействием частично проявляются в соприкасающихся материалах в ослабленном виде. Графен, например, может демонстрировать сверхпроводимость при контакте со сверхпроводником, ферромагнетизм при контакте с ферромагнитным изолятором или спин-орбитальное взаимодействие при контакте с соответствующими материалами[100]. Свойства материалов приобретают новые особенности при эффекте близости между магнитными материалами[101]. Чистые и идеальные решётки двумерных материалов меняют свойства хорошо изученных материалов благодаря формированию сверхрешёточного потенциала в результате возникла такая область исследований как твистроника[96]. Относительное вращение двух слоёв графена возможно продемонстрировать с помощью иглы атомно-силового микроскопа[102]. Все эти эффекты поддаются управлению посредством электрического поля[103]. В вакууме жидкости испаряются при комнатной температуре, что не позволяет использовать электронную микроскопию для исследования органических объектов, таких как протеины, живые клетки. Графен, являясь непроницаемым для всех химических элементов и будучи достаточно тонким, предохраняет живую клетку от высыхания в сверхвысоком вакууме сканирующего электронного микроскопа[104].
Приложения[править | править код]

Компьютерное моделирование наношестерёнок из молекул фуллеренов. Существует надежда, что достижения в области нанотехнологий приведут к созданию машин, работающих на молекулярном уровне.
Исследования в области физики конденсированных сред привели к многим важным применениям, таким как разработка полупроводникового транзистора[12]лазерных технологий[68] и ряда явлений, изученных в контексте нанотехнологий[105]:111ffСканирующую туннельную микроскопию используют для управления процессами в нанометровом масштабе, что привело к развитию нанотехнологий[88].
Наибольший вклад физики конденсированного состояний в прикладную область связывают с открытием транзисторов. Управляемость планарных полевых транзисторов зависит от ёмкости между затвором и каналом транзистора. Современная электроника переходит к архитектуре трёхмерных транзисторов, так называемые FinFET (полевой транзистор с вертикальным затвором), где можно значительно улучшить частотные характеристики и утечки[106]. Для дальнейшего роста характеристик затвор должен располагаться вокруг проводящего канала (полевой транзистор с затвором типа «все вокруг»), который приобретает форму нанопроволоки[107]. Несмотря на доминирующую роль кремниевой технологии в производстве интегральных микросхем существуют успешные попытки использования новых материалов для производства процессоров, в частности двумерного дисульфида молибдена[108] и углеродных нанотрубок[109].
Промежуточное состояние между жидкостями и твёрдыми веществами занимает мягкая материя, которая находит широкое применение в повседневной жизни в части, относящейся к полимерам, ткани и древесине, которые сильно реагируют на внешние возмущения из-за слабости связей между составляющими их частицами (в основном рассматриваются слабейшие вандерваальсовы и водородные связи)[110]. Низкая плотность углепластика и механические свойства углеродного волокна позволяют использовать композитные материалы в тех областях, где важно отношение прочности к весу материала такие как самолётостроение и спортинвентарь[111]. Жидкие кристаллы нашли применение в электронике[112]. Физика конденсированного состояния также имеет важное применение для биофизики, например, создан экспериментальный метод магнитно-резонансной томографии, который широко используется в медицинской диагностике[88].
Для интернета вещей необходимы источники питания без необходимости периодического заражения и предполагается, что источником энергии для таких систем будут окружающие источники: вибрации, радиосигналы, тепло. Сбор энергии[en] сопровождается преобразованием её в электрическую и сохранением в аккумуляторах. Для преобразования вибраций используют микроэлектромеханические устройства, использующие различные физические явления, такие как обратный пьезоэффектмагнитострикцию, для сбора радиочастотного спектра требуется антенны и ректификация сигнала. До 70 % основной энергии переводится обычно в тепло, что требует развития различных термоэлементов для улавливания и повторного использования этой потерянной энергии[113].
Примечания
Download 200.89 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling