Fundamentals of food technology study manual


II. CHAPTER OIL AND OILS TECHNOLOGY


Download 1.42 Mb.
Pdf ko'rish
bet7/52
Sana30.04.2023
Hajmi1.42 Mb.
#1413803
1   2   3   4   5   6   7   8   9   10   ...   52
Bog'liq
25,04,2023 йил ингилизча қўлланма 1111

 
2. II. CHAPTER OIL AND OILS TECHNOLOGY 
2.1. Oil industry raw materials, vegetable oil production technology 
 
The oil industry is one of the leading branches of the republic's food industry. 
In Uzbekistan, since ancient times, vegetable oil has been obtained in juvoz from 
the seeds of sesame, flax, indow, sorghum seeds, cotton seeds, and polys crops. 
The annual capacity of the republic is 3.5 mln. Tons of oilseed processing 
enterprises are working. In this branch of industry, oil is obtained from cotton, soy, 
rapeseed oil, fruit seeds and vegetable seeds and is used in food, perfumery and 
pharmaceutical industries. In the oil industry, margarine products, mayonnaise, 
laundry soap, perfume soap, and other various products for technical purposes are 
produced from these oils. In the production of vegetable oil, an average of 2.1 mln. 
more than a ton of cotton seed is used. Oil-industry enterprises YOMK (oil-oil 
combine), They are working in the form of some workshops in the form of MEZ 
(oil extraction plant) and various private small enterprises. The general scheme of 
the oil-oil combine, which consists of all production and processing shops, is 
presented in the following scheme, in which the sequence and connection of 
production departments in terms of raw materials and material movement is 
presented. 
Figure 1. 
The general scheme of departments of the oil-oil combine. 
1-Seed farm 


17 
2-Cleaning department 
3-Bite-separation department 
4-Forpress workshop 
5-Refining shop 
6-Extraction shop 
7-Crystalization shop 
8-Mayonnaise shop 
9-Hydrogenation workshop 
10-Margarine shop 
11-Fatty acids distillation workshop 
12-Soap shop 
In such an enterprise, the departments marked with numbers 1, 2, 3, and 4 
constitute a vegetable oil production enterprise, while departments 5, 6, 7, 8, 9, 10, 
and 11 are oil processing enterprises. 
According to the scheme, ready-made products such as refined oil, salad oil, 
mayonnaise, margarine, soap, and seeds such as shelukha and tar are available for 
sale. 
Based on modern technology, there are mainly two ways to obtain vegetable 
oils: 1. Pressing oil from the seeds. 2. Complete extraction of the residual oil from 
the oil using a solvent. 
Regardless of which method is used, each method is carried out according to a 
specific technological scheme. A technological scheme refers to a set of logically 
connected technological processes. Processes carried out under the influence of 
different factors (pressure, temperature, vacuum, humidity, etc.) are understood as 
technological processes. 
Technological process change is affected by some mechanical, heat, moisture 
and chemical reactants, and the process changes its direction. Technological 
processes consist of basic, preparatory, auxiliary and additional operations. 
Below, we will get acquainted with the technological processes in the 
production departments that make up the plant for the production of vegetable oils. 
The seed farm accepts (1) oilseeds. All oilseeds processed in the oil industry 
are brought to factories directly from company and collective farms. The only 
exception is cottonseed. The seed is supplied to the oil mills from the cotton gins. 
Oilseeds are transported by road and rail transport. Each of the above-mentioned 
varieties of seeds has its own characteristics. These are: moisture, dirtiness, 
oiliness, and for cottonseed, it is determined by the fluff on the husk (pukh). 
Oily raw materials can be divided into three main groups according to the 
level of industrial use: industrially important oilseeds (seed), additional oily raw 
materials (soybean, safflower, sunflower) and non-traditional oil seeds (fruit seeds 
and vegetable seeds). 
The raw materials arriving at the factory are weighed using special scales (car 
scales, railway scales), and then the raw materials are placed in the warehouses of 
the factory using mechanized devices. During the storage period in seed farms, it is 
required to protect against moisture, heat, microorganisms and some rodents. 
Otherwise, the oil obtained from raw materials will be inferior in terms of quality 


18 
(high color, high acid number, high content of oxidized substances). Therefore, 
depending on the type and quality of the supplied raw materials, its storage 
conditions should be determined, and the technical equipment of the warehouse 
should fully ensure these conditions. Warehouses used for all types of oilseeds 
should be dry, the floor should be isolated from underground water, and the walls 
should be whitewashed or plastered. The roof should not pass rain and snow, and 
the doors should be tightly closed. Before seeding, the warehouse must be cleaned 
of all waste, various rodents and disinfected with possible disinfectants. The main 
requirement is that the warehouse should be clean, dry and well ventilated. 
In order to direct the raw materials from the warehouse to the required part of 
the production, the conveying vehicles used in the factory are used. These include 
augers, redlers, conveyor belts, self-propelled devices, norias, pneumatic transport 
and others. 
In the preparation department (2,3,4) oily raw materials are processed in the 
following stages: cleaning from impurities, moisture conditioning, separating the 
kernel from the shell, crushing the kernel, soaking the crushed kernel, roasting the 
soaked kernel. , extracting the oil from the roasted janchilma presslab The first 
process performed in this section is the cleaning of the oil seeds. Because there are 
various compounds in oil seeds. These compounds are divided into the following 
groups: 
Impurities (mineral and organic) 
Oil mixtures 
Metallic compounds 
Mineral and organic mixtures include soil, sand, stone, etc. Organic 
compounds are made up of leaves, stems, pods, and stems. Oily mixtures include 
discolored, rotten or rotten seeds, and seeds of other wild and cultivated plants. 
Impurities, oily impurities and metal impurities in the raw materials should be 
removed as completely as possible, because the impurities intensively corrode and 
break the rotating and frictional parts of the equipment used for the processing of 
raw materials and deteriorate the quality of the finished product. 
The following methods of cleaning raw materials are mainly used in oil-oil 
enterprises: 
1. The method of cleaning the raw materials from the mixture on sieve 
surfaces based on their different shapes and sizes. 
2. The method of cleaning raw materials from impurities based on the 
difference in their aerodynamic properties. 
3. The method of separating the metal of seeds and mixtures based on their 
magnetic properties.
When cleaning oilseeds from impurities according to their sizedifferent mesh 
surfaces are used. Sieve surfaces can be in the form of a flat circular or multi-
faceted drum. In the cleaning of raw materials, not only sieve surfaces are used, but 
also aerodynamic separators and electromagnetic separators are used 
simultaneously or sequentially. 
Unlike all oilseeds, cottonseed is moistened before processing, because 
cottonseed is brought to the oil mills from the gin, not from the field, and the 


19 
moisture content of the seed is often below its critical moisture, which is the stored 
moisture content of seeds is around 6-8%. Due to this, after the seed is cleaned, its 
moisture is brought to a suitable state for technological processes. The moisture 
content of soaked seeds is determined by their core moisture content. This 
humidity is as follows: 8.5-9.5% for grades 1-3; 9.5-10.5% for 4 varieties. 
From a technological point of view, oilseeds consist of two parts: the kernel 
and the shell. The upper husk of all oilseeds is called luzga, only the husk of cotton 
seed is called shelukha. If the oilseeds are processed without removing the shell, 
then the high molecular carbohydrates and wax substances contained in the shell 
will increase in the obtained vegetable oil. This situation leads to deterioration of 
the quality of the obtained vegetable oil. But separating the shell of some oilseeds 
is very difficult or technologically impossible. These include rapeseed, hemp 
seeds, sesame, poppy seeds. In oil extraction technology, this process is done by 
crushing or cutting the seeds. The resulting product is called lightning. 
Oil and fat processing technology 
Oils in the forpress shop: Before processing by pressing or extraction, the oil 
must be crushed. Because it takes a lot of effort to fry an oily product directly in a 
pan and squeeze out the oil. A large amount of oil can be pressed or extracted from 
crushed raw materials. If the shell of the oilseeds can be separated, their kernel is 
crushed, while the oilseeds without the shell can be crushed directly. Threshing is 
done on a five-shaft threshing machine. The name of the product obtained from the 
grinding machines is called grinding. 
To get maximum oil from the vegetable, it is necessary to first soak and then 
fry. After grinding, a small amount of additional shelukha is added to the pulp 
before it is roasted. The presence of shelukha in the composition of the crushed 
kernel gives the product porosity and helps to distribute water and steam evenly 
throughout the product during frying. The process of wetting and heat treatment of 
oil is carried out under different conditions for different types of oilseeds. In 
addition, when the same vegetable is processed, it is fried in different conditions 
depending on the purpose of obtaining oil from initial pressing, obtaining oil from 
complete pressing, and extracting oil. The effect of the heat is that it reduces the 
adhesion of the oil to the gel part of the solution and allows it to separate and flow 
easily. 
The finished roast is fed to a pressing machine and the oil is squeezed out. 
Pressed oil contains about 2-10% small parts of the pulp, which we call oil fuza or 
residual solids. Therefore, the obtained oil must be cleaned of fuza before 
whitening. This purification is called primary purification and is done by settling 
followed by filtration. 
Oil extraction department. 12-14% of oil remains in the composition of the 
pressed kunjara if it is processed by pre-pressing method, and 7-8% if it is 
processed by full pressing method. This residual oil in the kunjara is called the 
oiliness of the kunjara. 
It is known that vegetable oils are composed of organic substances and 
dissolve well in most organic solvents. Solving the oil from Kunjara with the help 
of organic solvents is considered necessary from the economic point of view, 


20 
because the amount of vegetable oil obtained by pressing is not enough for the 
needs of people's consumption. Of course, the quality of vegetable oil obtained by 
extraction is lower than that obtained by pressing method, because various organic 
substances, which are useless for the body, except for lipids, have been dissolved 
in the extracted oil. As far as possible, vegetable oils obtained by the extraction 
method should be used in the technique. 
To extract oil from kunjara, cooled kunjara is crushed and given to extraction 
in a state with a specific size. The separated oil dissolved in solvent-gasoline is 
called micelles. The degree to which the internal structure of the extraction raw 
material has changed greatly affects the amount of oil obtained and the 
completeness of the process. The completely defatted kunjara residue is called 
shrot. 
During the extraction, the micelles coming out of the extractor contain about 
0.4-2% residual pellets of meal. Therefore, the micelles obtained from the extractor 
are first purified from the precipitate by various methods. Missella contains a 
certain amount of oil and the rest of gasoline, depending on the concentration. The 
process of extracting gasoline without gasoline is called distillation. Gasoline 
should be completely expelled from the nozzle, and the process should be carried 
out as quickly as possible. The distillation process is carried out by heating with 
open and closed steam and blowing off gasoline vapors under vacuum conditions. 
The slurry coming out of the extractor contains 25-40% solvent. Task 1 is to 
remove the solvent from the shot. The conditions of carrying out this process 
determine the quality of food. The toaster is very efficient and can handle the 
largest amount of solvent. The amount of solvent remaining in the shot is up to 
0.05%. Shot quality increases. 
Industrially obtained vegetable oils consist of a mixture of triglycerides and 
fatty substances. Fatty substances accumulate in the adipose tissue of the plant, and 
the oil is separated together, and they are called coagulants. 
These substances have a significant effect on the properties of oils and fats, 
even if they are present in small quantities. These include phosphorus-containing 
substances 
(phospholipids), 
pigments 
(carotene, 
xanthophyll, 
gossypol, 
chlorophyll), waxes (waxy substances), tocopherols and fat-soluble vitamins, 
sterols (steroids), free fatty acids, taste and other odorous organic substances, 
sulfolipids, glycolipids, glycoproteins, phosphoprotein compounds. 
Some of the accompanying substances spoil the color, smell and taste of the 
oil and have a negative effect on its nutritional and commercial quality, while some 
of them complicate further processing processes. 
Refining refers to the process of removing impurities from oils. 
Refining is a complex complex of various physical and chemical processes, 
the use of which makes it possible to extract accompanying substances from oil. It 
is determined by the nature of the processes, the nature of the oil and the intended 
use of the refined oil. Oil refining processes in the oil industry are carried out in the 
following sequence: hydration - alkaline refining - whitening - deodorization. 
The refining method should be chosen in such a way that the triglyceride part 
of the oil remains unchanged, the maximum amount of valuable compounds 


21 
(phosphatides) are separated from the oil, and the complete elimination of toxic 
substances is ensured. 
Refined oils have several requirements depending on their intended use. Oils 
used for food should be refined with a full cycle: separation of phosphatides and 
waxy substances, removal of free fatty acids, pigment substances. Oils used for 
technical purposes are refined with a short cycle. For example, hydrogenated oil is 
not deodorized. 
Not all compounds can be removed using one method. Therefore, in practice, 
several methods are used that combine into one technological scheme. 
Hydration of oils. Hydration is carried out in order to extract phosphatides. 
The amount of phosphatides depends on the type of oil and the method of its 
extraction. For example, forpress is 1.0-1.5% in soybean oil, extraction is 1.5-3.0% 
in soybean oil; 0.3-0.7% in forpress sunflower oil, 0.9-1.2% in extraction oil; 
The phosphatide molecule has a diphilic character: the hydrophobic part is a 
radical of fatty acids; hydrophilic part - active group (ether, nitrogenous base, 
hydroprotein, etc.) 
Despite the fact that the amount of phosphatides in oils is small and non-
toxic, due to their activity, they have a great impact on the quality of the oil. 
During storage, it forms a precipitate and makes the oil rancid. They stabilize the 
emulsion and, as a result, the phase separation is delayed, during bleaching, 
phosphatides are adsorbed on the surface of the sorbent, which increases its 
consumption. During hydrogenation, phosphatides reduce catalyst activity. This 
indicates the need to extract phosphatides from unrefined oil. The basis of the 
hydration process is that phosphatides interact with water and precipitate. 
Phosphatides are used in confectionery. 
The amount of hydrating water depends on the amount of phosphatide, its 
composition, structure and varies from 0.5% to 6%. A lack of water leads to 
incomplete hydration, while an excess of water results in an emulsion. 
In the process of hydration, the acid number of fat decreases by 0.4-0.5 mg 
KON (due to the release of sour phosphatides), along with phosphatides, proteins 
and mucous substances are also released. 
After the hydration process, 0.1-0.2% phosphatides remain in the oil. The 
hydrated oil is treated with concentrated phosphoric acid to remove unhydrated 
phosphatides. 
Hydration method: in various schemes, a reactor-turblizer is used to mix 
water and oil, and separators or plate clarifiers are used to separate oil-phosphatide 
emulsions into phases. 
Schematic diagram of the hydration process 


22 
Figure 2. Hydration technology consists of the following operations: 
1. mixing of oil with a hydrating agent; 
2. stirring the oil-water mixture to form the coagulation process of 
phosphatides; 
3. separation of oil and phosphatide emulsion phases; 
4. oil drying; 
5.drying phosphatide emulsion and obtaining phosphatide concentrate. 
Alkaline refining of oils. Vegetable oils contain certain amounts of free fatty 
acids, which depend on the quality of the oil. The presence of free fatty acids 
deteriorates the quality of oil and reduces its nutritional value. The acid number of 
oil used for food should not exceed 0.2-0.3 mg KOH. 
In industry, the method of neutralization of free fatty acids with alkali is 
mainly used. Alkaline refining is common. In this method, fat-insoluble salt, i.e. 
soap, is formed. Its aqueous solution precipitates out of the oil due to its high 
density. The separated soapy mass is called soapstock. 
Due to its high adsorption properties, soap separates the following compounds 
from oil: phosphatides, proteins, slime substances, dyes, and because of this, the 
refined oil partially turns white. The partial whitening of the oil is due to the 
reaction of alkali with some coloring matter (gossypol). That is why alkali is taken 
in excess. The excess amount of alkali depends on the nature and quality of the oil 
to be refined. For light-colored oils, the excess amount of alkali is 5-50%, and for 
dark-colored and difficult-to-refine oils, it is 200-300%. Alkali concentration is 
taken from 10 to 300 g/l, depending on the type and quality of the oil. Water is 
added to the concentrated alkali solution to prepare a working solution of the 
required concentration. 
Thus, soapstock, which is a waste product of the refining process, contains: 
soap, neutral oil, impurities, a certain amount of alkali, water, and excipients. Since 
soapstock contains fatty substances, it is used as a raw material in the production 
of fatty acids. 
The progress of the refining process and the formation of the soapstock 
structure depend on the oil temperature, alkali solution, concentration and process 
conditions. The temperature of the process depends on the concentration of the 
alkali solution. The higher the alkali concentration, the lower the process 
temperature should be. Usually the temperature is between 20-250 С (for 
cottonseed oil) and 80-850 С (for sunflower oil). 
raw oil mixture 
hydrated 
oil dried oil 
warm water 
dried phosphatide Phosphatide 







23 
The technological method of oil refining is chosen based on the color of the 
oil. Dark-colored (cotton, linseed) crude oils are mainly refined in a batch method, 
while light-colored (soybean, sunflower) crude oils are refined in a continuous 
method. The periodic method is carried out in neutralizers with a refining volume 
of 5, 10 and 20 t. Refinement is carried out as follows: 
Figure 3 
1st box (alkaline solution), 2nd box (oil), 3rd pump, 4th neutralizer, 5th 
vacuum device, 6th box (soap stock) 
Crude oil and alkali solution are mixed (1) and pumped from box 2 (oil), (3) 
to the back (4) neutralizer and heated (60-650 С) until soapstock flakes are formed, 
then cooled. (4). Refined oil was drawn through a hinged tube (5) to a washing and 
drying vacuum apparatus. (6) After the soapstock is extracted into the box, 0.05-
0.3% soap remains in the oil, which spoils the taste of the oil, oxidizes it, and 
reduces the catalyst activity in the hydrogenation process. The oil is washed to 
remove the remaining soap. The amount of soap should not be more than 0.05%. 
Drying is carried out at a temperature of 90-950 С and under vacuum (residual 
pressure 20-40mm.cm.us.). Washed-dried oil is a finished refined oil. Soapstock is 
placed in a special jar. 
The disadvantage of the periodic method is the length of tempering, the large 
amount of neutral oil in the soapstock, and because this process is long, it 
saponifies the neutral oil. Soapstock has a fat content of 30-50%. 
In the continuous refining method, neutralization is carried out in mixers, and 
phase separation is carried out in separators. There are technological lines of A1-
JRN (capacity 80-120 t/s), "Alfa-Laval" (capacity 80-180 t/s), "Westfal" (capacity 
300 t/s) working continuously. 
Refined oil should have the following indicators: 
table-1 
Color, red unit. 

10 
Acid number, mg KOH 
0.2 
0.3 
Moisture and volatile substances, % 
0.1 
0.2 
Flash point, 
0
С. 
232 
232 
Whitening of oils. Catharinoids from the accompanying substances are 
resistant to alkali, so they do not separate in alkaline refining. If the concentration 
of the alkaline solution is high, during neutralization, carotenoids are sorbed to the 
soapstock and the oil is partially whitened (clarified). Carotenoids are actively 
sorbed on the solid sorbent surface. Unlike carotenoids, chlorophylls react with 
alkali and form compounds. However, it is not completely separated in alkaline 
refining. 
Sunflower oil contains carotenoids and chlorophylls, while cottonseed oil 
contains gossypol along with them. To remove dyes from oil, adsorption cleaning 
method - bleaching is used. 
The success of adsorption depends on the nature and structure of adsorbed 
substances. For example: non-polar (less polar) compounds are well sorbed on 
non-polar adsorbents (coal) and polarized compounds are well sorbed on polarized 
sorbents. 


24 
All coloring substances in oils and fats are different in nature and structure. 
But each of them has its own polarity. Therefore, polar adsorbents with selectivity 
and activity in oil adsorption refining: natural bentonite soils are obtained from 
aluminosilicates. More activated, oil content - 75%, earth-ascanite is used. 
Adsorbents should be highly absorbent, dispersible, have a small oil capacity, do 
not chemically react with oil, and should be easily separated from oil. 
The efficiency of the bleaching process is determined by the color of the 
bleached oil, the amount of sorbent used, the rate of loss and waste, and the 
amount of bleached oil released. When activated earth is used in the bleaching 
process, some isomerization and some glycerides are formed. This leads to a 
decrease in the quality and shelf life of refined oils and fats. 
Whitening time is about 20-30 minutes. Long-term retention of oil with an 
adsorbent causes its oxidation and the oil acquires an earthy taste. Therefore, it is 
required to reduce the amount of activated earth used for whitewashing and the 
time of soil contact with oil as much as possible. Hydrated, neutralized, washed 
and dried oils are recommended for bleaching, and in order to reduce oxidation 
during bleaching, the process is carried out under vacuum. In recent years, 
hermetic filters have been installed in the world, which mechanically remove 
sediment of various designs. Continuous whitewashing methods have been 
developed. The justification process for all methods is carried out in the following 
principle. 
Figure 4 
1. Preparation of oil suspension of adsorbent; 
2. Deodorization, bleaching process; The bleaching process is carried out for 
20-30 minutes at a temperature of 75-80 
0
С and a residual pressure of 4 kPa 
(around 40 mm. wire). 
3. Separating the adsorbent using a filter. The pressure during filtration should 
not exceed 2.5-3 atmospheres, and the temperature should not exceed 85-90 
0
С. 
Deodorization of oils. The last stage of the refining process is deodorization 
(deodorization), the purpose of which is to remove the unpleasant taste and smell 
from the oil. It is the complex mixture of substances in the oil that produce the 
taste and smell. These substances include lower molecular fatty acids (capric, 
caprylic, etc.), aliphatic hydrocarbons, natural essential oils, aldehydes, ketones, 
oxyacids, etc. During deodorization, other toxic organic compounds are also lost. 
The process of deodorization is essentially the removal of aromatic substances 
from the liquid layer by evaporation. 
Deodorization efficiency depends on the composition, volatility and process 
temperature of aromatic substances. 
As the temperature rises, the volatility of aromatic substances increases. 
However, if the temperature is too high, it will lead to polymerization and 
oxidation of the oils. If the temperature exceeds 250 
0
С, the oils are thermally 
decomposed. Therefore, in order to reduce the temperature when extracting 
aromatic substances, the deodorization process is carried out under the influence of 
hot steam under vacuum. 


25 
The quality of oils intended for consumption also depends on the complete 
and flawless performance of the deodorization process. Therefore, deodorization is 
one of the main processes in oil purification. 
In order to obtain high-quality deodorized oil, in addition to the general 
requirements, the following requirements must be met: 
1. During deodorization, the oil should not be kept at high temperature for as 
long as possible. 
2. Before deodorization of oils, it is necessary to deaerate them. 
3. Oils should be protected from contact with moist air during deodorization 
and cooling. 
4. If the equipment is stopped after the deodorization is finished, it should be 
degreased and all parts should be washed and cleaned. 
Different deodorizers are used to deodorize oils: 
Periodic (continuous) deodorizers, Continuous deodorizers (De-Smet, Pinch-
Bamag, Ole). 
In the periodic deodorization process, the temperature is 170-2100 С, and in 
the continuous process, it is up to 2300 С. The residual pressure in the devices is 5 
mm. is equal to a column of mercury. Multistage steam ejectors (steam ejector 
vacuum pumps) are used to create a vacuum. 
Fats and oils must be thoroughly refined before deodorizing. Fats and oils 
used for deodorization should not contain soap and bleaching earth residues at all. 
If there are residues of soap or bleaching earth in the oil being deodorized, they are 
sent to re-filtration. 
In order to maintain the quality of deodorized oil, citric acid solution (20%) is 
added to it in the amount of 0.6 l per 1 ton of oil during the deodorization process. 
The steam supplied for deodorization should not contain salt, oxygen and 
other gases, and the steam should be dry and neutral. 
The description of the principle scheme of periodic deodorization is as 
follows: Refined oil is sucked from the tank to the deodorizer using a vacuum, and 
the deodorizer is half filled with oil. The oil is heated to a temperature of 1000 С 
and exposed steam is supplied to the deodorizer from a barb at the bottom. When 
the temperature reaches 1800 С, the amount of steam is increased. The vacuum in 
the deodorizer is created using a unit of steam ejectors. The residual pressure in the 
device is 5 mm. sim. should not exceed the column. The steam-air mixture coming 
out of the deodorizer is sucked into the vacuum system through the drop holder 
and is captured in the drop holder. 
The temperature of deodorization is around 1800 С for coconut oil, 210-230 0 
С for salomas and other vegetable oils. 
Deodorization time is around 1.5-3 hours. The deodorized oil is cooled and 
sent to the packaging department. 
Production of solid vegetable oils and assortments of margarine products 
Solid fats are of great importance in industry, they are the main raw materials 
in the production of margarine, household and perfume soaps, and stearin. 
However, the amount of natural solid oils is limited, while liquid vegetable oils are 
produced in large quantities. Therefore, liquid oils are hydrogenated to a solid 


26 
state. The hydrogenation product is called salomas. Currently, 2 hydro plants are 
operating in Uzbekistan. 
The chemical and physical properties of vegetable oils depend on their fatty 
acid composition. Vegetable oils contain a large amount of unsaturated fatty acids 
(olein, linoleic, etc.). They have one or more joints. In the process of 
hydrogenation, along with the saturation of unsaturated acids, the migration of 
double bonds and transisomerization occurs, which increases the melting 
temperature and oil hardness. 
Hydrogenation uses fatty acids extracted from sunflower, cottonseed, 
rapeseed and soapstock oils. 
The hydrogenation time depends on the chemical composition of the raw 
materials and the purpose of salomas production. There are several different types 
of salomas that are produced. By partial hydrogenation of vegetable oils, salomas 
with melting temperature Tpl-31-340 С, hardness 160-320 g/cm, iodine number 
equal to 62-82 are obtained, these salomas are margarine, cooking oils used in 
production. In addition, salomas with a melting temperature Tpl=35-370 С and a 
hardness of 550-750 g/cm are obtained, which are used in the production of 
confectionery products. 
The 1st hydro plant was commissioned in 1909 in Nizhny Novgorod. Hydro 
plants were built in 1911 in Petersburg and in 1917 in Yekaterinburg (Krasnodar). 
The combination of hydrogen in the hydrogenation process can be shown 
conditionally as follows. 
SN3(SN2)4 SN=SNSN2SN=SN(SN2)7SOON + N2 
Linoleic acid 
SN3(SN2)7SN=SN(SN2)7SOON 

N2SN3(SN2)7SN-
SN2(SN2)7SOON 
Oleic acid Stearic acid 
Under normal conditions, hydrogen does not bind to unsaturated fatty acids. 
Hydrogen binds to fatty acids only in the presence of a catalyst. 
The speed of the hydrogenation process: the speed of hydrogenation of 
glycerides depends on the activity and quantity of the catalyst in the content of 
fatty acids in them, the intensity of hydrogen transfer from the system and its 
uniform distribution in the oil, and the temperature of heating the oil. 
The more active the catalyst, the faster the hydrogenation. Increasing the 
amount of catalyst accelerates the reaction. But if the catalyst is taken more than 
0.3-0.4% of the oil mass, the reaction rate does not increase significantly. As the 
temperature increases, so does the rate of hydrogenation. In industry, 
hydrogenation is carried out at a temperature of 180-2200 С. 
The hydrogenation temperature depends on the activity of the catalyst and the 
nature of the oil. The progress of the process and the quality of salomas depend on 
the nature of the catalyst. The Cu-Ni catalyst is more selective than the Ni catalyst, 
i.e., it enables the production of feed salam. A used catalyst is more selective than 
a new catalyst. 


27 
The formation of isoacids is explained by the formation of half-hydrogenation 
products. The formation of isoacids increases the hardness of salomas. For 
example, cisoleic acid has a melting point of 160 С, while transoleic acid (elaidic 
acid) has a melting point of 440 С. 
The rate of isomerization also depends on the nature of the catalyst, 
temperature and N2 pressure. In an active catalyst, the rate of hydrogenation is 
higher than the rate of isomerization. Therefore, salomas with a soft consistency 
are obtained on active catalysts. 
Catalysts in the process of hydrogenation of oils. Industrial catalysts for the 
hydrogenation of oils must meet the following requirements: 
1) should only have the ability to accelerate the hydrogenation process and 
should not cause adverse reactions. 
2) should have high activity production capacity and selectivity. 
3) the catalyst should be easily separated from the environment. 
4) low price of the catalyst, abundance of raw materials and materials. 
In the hydrogenation of oils, nickel-based catalysts are used, as well as nickel 
and copper catalysts. According to the structure of the catalysts, they are powdery 
and granular, in the form of an alloy. Powder catalysts are used in the form of 
suspension (in oil), they are called dispersed or suspended, the particle size is 15 
μm. To increase the surface area of catalysts, metals are deposited on a porous 
material. Catalysts obtained by this method are called supported catalysts. 
Catalysts are divided into 2 depending on the method of obtaining them. 
1) deposited 
2) should be mixed 
The essence of catalyst action.Molecules must collide for a chemical reaction 
to occur, but very few collisions result in molecules joining together. This is 
explained by the fact that the energy of very few molecules has the ability to break 
bonds and form new bonds. This minimum energy of the molecule is called the 
energy activity of the reaction. 
The catalyst combines with the reactants to form a highly reactive surface. 
Catalysts accelerate the reaction rate by 106 - 1016 times. Hydrogenation consists 
of the following steps: 
1) bring reactants to the surface of the catalyst 
2) adsorption of these molecules on the surface of the catalyst 
3) chemical exchange of sorbed molecules and formation of products. 
4) consumption of bonds of product molecules on the surface of the catalyst 
5) separating them from the surface of the catalyst 
There are adsorption centers with different activity on the surface of the 
catalyst. Such adsorption centers are called active centers of the catalyst. 
In industry, a solution of Ni and Cu sulfate with a concentration of 35 g/l and 
a ratio of Ni : Cu = 3:1 or 1:1 is prepared to obtain a catalyst. A 10% solution of 
soda is added to the solution at a temperature of 40-450 С in an excess of 20-30%. 
NiSO4 + Na2CO3 NiCO3 + Na2SO4 
CuSO4 + Na2CO3 CuCO3 + Na2SO4 


28 
The precipitate is filtered and washed from soda and sulfates on the filter. 
Then the precipitate is dried at a temperature of 1200 С and ground. Ni–Cu catalyst 
is easily reversible (200-220 
0
С). 
After alkali treatment, as a result of the dissolution of A1, the surface of the 
alloy remains active. The alkali-washed alloy is then dried to a neutral reaction 
with the condensate, and the temperature is raised to 1600 С. 
Hydrogen production. Several methods of hydrogen production are known. 
Of these, the following are used in hydrolysis. 
1. iron vapor method (contact) 
2. natural gas conversion method 
3. electrolytic method. 
Production of hydrogen in this widely used electrolysis method: 2 electrodes 
(cathode, anode) in which the water solution is immersed in the electrolyte create 
an electrolytic cell. 
An electrochemical reaction occurs at the electrodes. The following reaction 
occurs during electrolysis: 
2N2O = 2N2 + O2 
As a result, one molecule of hydrogen produces ½ volume of O2 as a 
byproduct. Water electrolysis is carried out in electrolyzers. 
It consists of a bath for electrolyte and electrodes lowered into it. 
FV-250 and FV-500 type electrolyzers are used in hydropower plants. Their 
N2 production capacity is 250-500 m3 per hour. 
Achievement of the method: high durability of electrolyzers, high purity of 
N2 (99.8%), low cost of raw materials (water), minimum consumption of water 
and auxiliary materials, high automation of the process. 
Disadvantage: high consumption of electricity. 
Hydrogen is stored under pressure of 2.7-3.6 KPa in wet gas holders with a 
volume of 3000 m3. 
Methods of hydrogenation. Hydrogenation of oils is a liquid phase 
heterogeneous catalytic process. N2 and solid - suspended or stationary catalysts 
are used. Hydrogenation is carried out by periodic and continuous methods. 
Continuous hydrogenation is carried out in batteries. It consists of 3 
autoclaves, which are connected by a gas lift or pouring tube. This method 
statement is as follows: 
Refined and refined oil from the collecting tank is continuously pumped with 
the dispenser through a heat exchanger, where it is heated due to the heat of the 
finished salomas) to the autoclave. In this autoclave, oil is heated to 190-200 0 С 
with high pressure steam. The autoclave is continuously supplied with catalyst 
suspension from the collection tanks using a pump dispenser. 1:4 or 1:5 ratios are 
prepared by mixing the catalyst, fresh catalyst in the mixer, and spent catalyst. The 
catalyst is sent to the autoclave in the form of an oily suspension with a 
concentration of 5%. Oil goes to the 2nd autoclave at a temperature of 200-210 0 
С, to the 3rd autoclave at a temperature of 210-220 0 С. 
The ready-made salami, together with the processed catalyst, comes to the 
salami collector-refiner device through the gas separator, heat exchange devices. 


29 
There, salomas is partially separated from the catalyst, then it comes to the filter 
press through a cooler and is separated from the catalyst. The filtered sludge is 
collected in a tank. The separated hydrogen is sent from the gas separator to the 
gas treatment system. In the purification system, purified hydrogen is mixed with 
fresh hydrogen in a mixer. This mixture is sent to a high-pressure receiver with a 
compressor. There, the coolant is cooled with brine and comes to the autoclaves 
through the water separator. Oil is transferred from autoclave to autoclave using a 
gaslift. The working gas in gas lift is hydrogen. The gas lift is 2 pipes that are 
joined together, and it goes down to the bottom of the autoclave. Hydrogen is 
injected through the inner tube, there are small holes at the bottom of this tube. The 
hydrogen mixes with the oil to form a mixture of low specific gravity. Due to this, 
the oil in the pipe rises and passes through the connecting pipe to the next 
autoclave. 
Indicators of hydrogenated oils. 
Salomas used for food (TU Uz 86-1-97) 
Table-2 
Indicators 
Salomas brand 




Titer, 0 С 
31-34 
32-
36 
35-
37 
42-45 
Hardness at 150 
С, g/cm 
160-
320 
16
0-320 
500-
700 
Undetectable 
Iodine number, 
% J2 
70-85 
70-
85 
60-
70 
cannot 
be 
determined 
Acid number, 
mg/ KOH 
1.0 
1.0 
2.0 
3.0 
1-for the production of margarine products, salomas are obtained from 
vegetable oils. 
2-for the production of margarine products, salomas are obtained from a 
mixture of vegetable and beef fat. 
3- salomas for confectionary oil, obtained from cottonseed oil. 
4- salomas for confectionary oil, obtained by transesterification from palm oil. 
Technical greetings (TU Uz 86-2-98) 
Table-3 
Indicator

Salomas brand 




5 6 
Iodine 
number, % J2 
65 
65 
65 
55 
1


Titre, 0 C 
39-43 
39-43 
46-50 
46-50 
5

54 
Ksmg/ KOH 
3.5 
Undetectable 

Undetectable 
6 3 
1 - salomas obtained from vegetable and animal fats (for perfume soap) 


30 
2 - salomas obtained from distilled fatty acids of soap stock (for perfume 
soap) 
3 - salomas obtained from vegetable and animal fats (for household soap) 
4 - salomas obtained from distilled fatty acids of soapstock (for household 
soap) 
5,6 - salomas for stearin from vegetable and animal fats. 
Margarine was developed as a butter-like fat in 1869 by the French chemist 
Mege-Mure. He proposed to emulsify the soluble part of melted beef fat using 
cow's stomach whey. When the resulting mixture was cooled in distilled water, a 
semisolid pale yellow glistening product was formed. Maj-Murray called it 
margarine. (Margaret - French - pearl). It means pearl. Margarine is a small-
particle emulsion, which includes: fats, milk, salt, sugar, vitamins, phosphatides, 
emulsifiers, etc. The first margarine factories were launched in 1930 in Moscow 
and St. Petersburg. In our republic, hard and soft margarine is produced at the 
Tashkent oil-oil combine. The nutritional value of oils is determined by their 
energy value and physiological effects. Margarine is not inferior to milk fat in 
terms of absorption by the human body, and it is higher than it in terms of energy 
value. 
It is known that oils in the state of small-particle emulsion are well absorbed 
by the human body. This is also affected by the melting point of the oils. 
Therefore, based on the properties of the oils used for margarine, the melting 
temperature of the product should not be higher than 31-340 С. Essential 
(unsaturated) fatty acids present in margarine increase its physiological value. 
Assortment of margarine products. Margarine products are divided into the 
following: 1. The amount of fat in margarines should not be less than 82%. (milk 
margarines). 2. Culinary oils have a fat content of up to 99.7% (for confectionery, 
bakery products and cooking). 
Depending on the use and recipe, margarines are divided into: 
A) Kitchen and branded (sandwich) margarines 
B) For industrial processing and general food system 
C) margarines with flavoring additives (fat content should not be less than 
62%). 
Margarines can be hard, soft and liquid. 
Soft margarines are used as sandwich spreads. Liquid margarines are used for 
the production of bakery products and confectionery. 
Flavored margarines (chocolate) contain cocoa powder, a large amount of 
sugar, and are used to make confectionery. 
Culinary oils are produced in the following range: for biscuits, chocolate and 
waffle products. These oils have a different composition and consist of the 
following components: salomas, transesterified oil, vegetable oil. Some cooking 
oils include: beef fat. 
Fats used for bakery products are prepared in liquid form with the addition of 
phosphatide. 
The main raw materials for the production of margarine. The main raw 
materials for margarine production are oil and milk. 


31 
Oily raw materials. The main raw material is liquid and hydrogenated 
(healthy) vegetable oil. Sunflower, cotton and soybean oils are widely used. 
Hydrogenated oil is the main component in the recipe of margarine products. In 
addition, beef, sheep fat and butter are used as animal fats. 
For the production of milk margarine, pasteurized or frozen milk is used. 
Warmed milk gives margarine a unique taste and aroma, and increases the shelf 
life of margarine. The amount of dry matter in milk should be more than 8.0 
percent and the acidity should be less than 210T (The acidity of milk in Turner is 
the amount of milliliters of 0.1N alkali solution needed to neutralize 100 ml of 
milk). 
If the acidity exceeds 230 T, milk may coagulate during pasteurization. The 
acidity of freshly milked milk is 15-160 T. 
About emulsions. Margarine is a thick emulsion made from a mixture of 
water and oil. An emulsion is a mixture of two liquids that do not mix and do not 
dissolve in each other. One of the liquids is distributed in the second in the form of 
small particles (droplets). There are two types of emulsion: oil-in-water (O-W) and 
water-in-oil (W-O). Examples of natural emulsions are milk or butter. Emulsifiers 
are used to make the emulsion stable. 
Emulsifier is used in the preparation of margarine - an emulsifier is used to 
create a stable and small-particle emulsion. A good emulsifier makes margarine 
very stable, binds fats with water and forms complex compounds, improves 
emulsification properties, accelerates absorption into the body, increases surface 
activity. In the production of margarine, monoglyceride, distearate monoglycerin 
(T-2), dried milk and a mixture of monoglycerin and phosphatide concentrate (TF), 
MG, MGD, T-1 brand emulsifiers are used as emulsifiers. 
Margarine recipe. The fat base of margarine consists of a mixture of different 
fats. The melting temperature, hardness and amount of solid phase of this mixture 
are the main indicators of margarine. The melting temperature depends on the 
composition of the fatty base. In order to obtain a moderate structure, several types 
of salomas with different melting temperatures, transesterified oils and liquid 
vegetable oils are added to the fatty base of margarine. Oil base recipes for 
confectionery, bakery products and culinary oils are made depending on their use. 
The following tables show the recipes of milk margarines and cooking oils. 
Table-4 
Components 
Stolovy 
butter 
Extra 
Amount of % 
S salomas Ts 31-340 C 
Hardness 160-320 g/cm 
46 
50 
26 
Hello, Ts 35-360S 
Q=350-410 g/cm 
11 

12 
3. Cotton palmitole Ts 18-220 С 



4. Vegetable oil 
16 
15 
10 
5. Coconut oil 


25 
6. Sari oil 





32 
7. Paint 
0.2 
0.2 
0.2 
8. Milk 
12 

16 
9. Emulsifier 
0.2 
0.2 
0.2 
10. Salt 
0.4 
0.3 
0.3 
11. Sugar 
0.4 
0.3 
0.3 
12. Water 



Total 
100 
100 
100 
Including fat, combined with 
milk fat 
82 
82 
82 
Recipe of culinary oils 
Table-5 
Composition 
Confectio
nery 
oil 
for 
cookies 
Veg
etable oil 
Culinary oil 
shar

Pe
norus 
1. Salomas Ts 31-340 С 
solid lig 160-320 g/cm 
73 
70 
65 
35 
2. Beef fat 
24 


30 
3. Sheep fat 


15 

4. Vegetable oil 

10 
10 
20 
5. Cotton palm 

20 
10 
15 
6. Phosphatide concentrate 




Total 
100 
100 
100 
10

Preparation of milk. Composition of cow's milk, in % 
Water up to 87 - 89 
Fat 3.0 – 6.0 
Proteins 3.4 - 4.0 
Lactose 4.0 – 5.5 
Mineral substances 0.6 - 0.8 
Milk protein is milk albumin, milk globulin. Casein can make up 80% of the 
total amount of protein. 
The presence of solids in milk represents the nutritional value of milk, and 
their decrease indicates that the milk has been diluted with water. Milk contains 
both fat-soluble and water-soluble vitamins and mineral elements. Milk is 
processed in two stages. The first is cleaning, the second is freezing. 
Milk is pasteurized to completely remove bacteria. 
The purpose of curdling milk is to give margarine a milky, sour and aromatic 
taste and to prevent the development of microflora that may be present in 
margarine under the influence of the resulting lactic acid. In the margarine, mixed 
milk and unheated milk are added in a ratio of 1:1, 1:3. The aromatic taste in 
heated milk is determined by the presence of diacetyl and diacetoin substances. 
Milk freezing drops are brought to margarine factories in dry form. From them, 


33 
drops in a small amount of liquid solution are prepared, then drops in a solution 
mixed with a large amount of milk. 
All components according to the recipe are specially prepared. Phosphatide 
concentrate is used as an emulsifier and is added to increase the nutritional value of 
cooking oils. Phosphatide concentrate should contain not less than 50% 
phosphatide and moisture should not exceed 4%. It is dissolved in the ratio of oil 
phosphatide 4:1 Table salt is added to improve the taste of margarine and as a 
preservative. Sugar improves the taste of margarine. Fatty solutions of carotene are 
added as dyes to margarine in order to give it a light yellow, i.e., butter-like color. 
Currently obtained by biosynthesis

-carotene is used. Vitamins are added to 
increase the biological properties of margarine. Additional artificial flavorings are 
also added to give it a pleasant aroma. 
The principle of margarine production. Margarine production consists of the 
following operations: standardization, mixing, emulsification, supercooling, 
crystallization and packaging. 
Two methods of standardization are known: by weight and by volume. 
Standardization by weight ensures that components are obtained in exact 
quantities. 
Mixing In the process of mixing the components, mixers are used that keep 
the temperature of the mixture at 38-400 С. During mixing, a rough emulsion, that 
is, a preliminary emulsification process, is performed. The rotation speed of the 
mixer is 60 rev/min. 
Emulsification uses homogenizers to produce a fine-particle emulsion from a 
coarse emulsion. They are horizontal triple plunger high pressure pumps. Their 
main element is the homogenizing chamber part. After the emulsion enters the 
chamber, it is squeezed out by means of a ratchet and a valve. At this time, a 
highly dispersed emulsion is formed. The high pressure created by the pump is 
used to overcome the resistance of the emulsion in the pipes from the supercooler 
to the packaging machine. The pressure of the pump is 18-22 atm. 
Supercooling When the margarine emulsion is cooled, the crystallization 
process occurs. The formation of structures depends on the cooling rate, mixing 
speed, and the amount of saturated and unsaturated glycerides. Large crystals form 
on slow cooling. They give margarine roughness, brittleness and crumbly 
properties. 
In modern margarine production plants, supercooling is combined with 
mixing. As a result, margarines that are quickly liquid, pliable and of good 
consistency are produced. 
Crystallizers are installed before packaging to obtain a product with the 
required crystal structure, uniform and gentle consistency. 
Refined and deodorized oils and fat-soluble substances are measured on a 
prescription automatic scale, and the aqueous-milk phase is measured on a second 
automatic scale (1) and the phases are mixed in a mixer at a temperature of 38-400 
С (2). Then, the emulsion is homogenized with a high-pressure pump at a pressure 
of 18-22 atm (3) and transferred to a supercooler at a temperature of 38-400 С. It is 
cooled to 12-140 С in a refrigerator (vatator) (4), then filtered, sent to a crystallizer 


34 
(5) and then to packaging machines. The packed margarine from the packing 
machines (6) is fed to the packing machines, placed in boxes and sent to the 
finished product warehouse. 
Figure 5 
In the production of margarine in a monolith, it is passed through a 
decrystallizer and filled into boxes. Most continuous automated lines have a 
capacity of 2.5 tons per hour. 
Bulk margarines contain a large amount of liquid vegetable oil. Cast 
margarines are produced with 82% and 60% fat. These margarines are designed to 
prevent and treat disease. They are produced in polymer containers (glasses and 
jars). 
The technological process of production of bulk margarine is similar to the 
above process. The difference is that after cooling, the margarine is sent to a 
decrystallizer for mechanical processing, and then to packaging. 
Production of culinary oils. Culinary oils are intended for culinary and food 
industry. These are anhydrous and consist of oils and vegetable oils, salomas, 
animal fats. Depending on the purpose of use, dyes, antioxidants and flavoring 
substances can be added to them. 
The technological flow of production of culinary oils consists of the following 
stages: storage of oils and their melting, moderation, mixing, cooling, mechanical 
processing and packaging. 
The fatty acid composition of cottonseed oil is as follows 
Table-6 
Naming 
of the acid 
Formula 

amount in 
cottonseed 
oil 
Saturated 
Palmitin 
C3N(CN2)14COON 
23.4 
Miristin 
CN3(CN2)12COON 
1.4 
Arachnid 
CN3(CN2)18COON 
1.3 
Stearin 
CN3(CN2)16COON 
1.1 
Unsaturated 
Linol 
CN3(CN2)14 CN2= CN(CN2)CN=CN(CN2)7 – COON 
47.8 
Olein 
CN2(CN2)7CN = CN(CN2)7 COON 
22.9 
Palmitolein 
CN3(CN2)5CN = CN(CN2)7 COON 
2.0 
Myristolein 
CN3(CN2)3CN = CN(CN2)7 COON 
0.1 
Based on the above, substances accompanying vegetable oils can be 
conditionally divided into two groups: 
1) substances arising from climatic conditions and variety indicators and 
occurring naturally during plant growth and seed ripening, as well as substances 
that enter the oil composition during technological processes. 


35 
These substances include phosphorus-retaining substances (phospholipids), 
pigments (carotene, xanthophyll, gossypol, chlorophyll, etc.), waxy substances, 
fat-soluble vitamins (A, D, E, K), sterols, odor and flavoring substances. , free fatty 
acids, glycolipids, phosphoproteins, etc. enters. 
2) substances formed in seeds under the influence of unfavorable conditions 
during storage, technological factors during processing (high temperature, 
humidity, oxygen in the air). 
Pigments are coloring substances that pass through raw materials during the 
oil separation process and have coloring properties to some extent. Under certain 
circumstances, there may be substances with a specific composition. For example, 
in the reaction of amino group-preserving lipids with sugars, they become 
melanophospholipids and derivatives of deep oxidation of lipids. 
a) carotenoids - highly unsaturated carbohydrates, carotenes and their oxygen-
retaining derivatives, xanthophylls. They can color oils from yellow to red. Their 
highest amount is in palm oil (600-800 mg/kg), sunflower oil can contain up to 40 
mg/kg, and milk fat can contain up to 20 mg/kg. The content of carotenoids in 
extraction oil is more observed than in press oil. β-Carotene is converted into 
vitamin A in the living organism. 
b) chlorophylls - have the property of giving green color to vegetable oils. 
Chlorophylls are often found in rapeseed, olive, grape and safflower oils. The 
content of chlorophyll in rapeseed oil reaches 5-20 mg/kg. 
Under the influence of mineral acids, chlorophylls are converted into 
fephytin, and then pheophorbide. All of them are adsorbed on bleaching earth and 
coal. 
c) gossypol - a specific pigment found in plants belonging to the genus 
gossypium. It has the property of coloring cottonseed oil from yellow to dark red. 
In addition to coloring, gossypol is also a toxic, biologically active substance. Its 
content in cottonseed oil can be 0.02-2.0%. 
Fat soluble vitamins. Vitamins are organic compounds of different chemical 
nature that participate in vital biochemical and physiological processes in living 
organisms. Fats and oils contain fat-soluble vitamins (lipovitamins) D, E, K, and 
animal fats also contain vitamin A. 
Sterols. Sterols are polycyclic alcohols belonging to the group of 
unsaponifiable substances. They differ in the structure of the hydrocarbon radical 
and its branches. According to their origin, sterols are divided into zoosterols (in 
animal fats), phytosterols (in vegetable oils) and mycosterols (in molds and 
yeasts). Sterols are a component of any natural fat. In vegetable oils, sterols are 
found not only in free form, but also in the form of fatty esters - steroids. 
Free fatty acids. Oils extracted from mature and healthy seeds always contain 
some amount of free fatty acids. Their composition does not differ from 
triglycerides fatty acids. They are mainly derivatives of hydrolysis of 
triacylglycerols due to unfavorable conditions during seed storage or processing. 
Fragrance and coloring agents. The smell and taste of oils are determined 
organoleptically. The peculiarity of these substances is their volatility and the 
presence of specific functional groups in their molecules. They are in small 


36 
amounts in oils, but they are important because of their diversity. Hydrocarbons, 
aldehydes, alcohols, lower molecular ethers, fatty acids, etc. The main sources of 
odor and taste are methyl ketones and aliphatic hydrocarbons. 
Nutritional value of fats 
Table-7 
Oils 
Average energy 
value, kJ/g 
Body absorption, % 
Milk fat 
38.64 
93-98 
Coconut oil 
37,38 
94 
Cottonseed 
oil 
39,48 
95-98 
Sunflower oil 
39,23 
95-98 
Pig salad 
39,48 
95 
Margarine 
40.11 
93-98 
Food 
greetings 
40.11 
93-96 
18-22% of cottonseed oil is palmitic acid and 2-4% is stearic acid. The quality 
of cottonseed oil is divided into fractions. Since the initial temperature of the oil is 
20-300 С, it is cooled to 120 С before crystallization. After filling the crystallizer 
with oil, it is stirred to bring it to moderate temperature and left to cool and 
crystallize. 
After 24 hours, the oil is placed in the chambers where the temperature of 7-9 
0 С must be slowly in the crystallizers, a sample of the oil is taken every 8 hours, 
and its clouding time at the temperature of 0 0 С is checked. Crystallization is 
complete if the oil does not become cloudy for 6-7 hours. The duration of 
crystallization depends on the quality of the initial oil and the cooling process, 
which lasts 48-50 hours. 
To implement the technological process, we choose a technological scheme 
that is executed in the following sequence. 
- Reception of refined cottonseed oil in oil containers; 
- cooling cottonseed oil with demineralized water in heat exchangers in the 
form of "pipe-in-pipe" before crystallization; 
- cooling the oil under the influence of air temperature in the crystallization 
chamber of the crystallizer and carrying out the crystallization process; 
- separation into solid and liquid fractions in filters; 
- deodorization of salad oil; 
- cooling deodorized salad oil; 
- heating for cleaning from palmitine fraction in filter presses; 
Description of the production technology of deodorized salad oil 
Refined cottonseed oil is metered in the meter (5) by the tank (1) and the 
pump (2) and fed to the primary cooler (6) for cooling. In this case, the temperature 


37 
of the oil will be 20-25 0 С. Then it passes through the non-compelling cooler (7) 
and is transferred to the crystallizer (8), where the temperature of the oil should be 
lowered to 10-12 0 С. This process lasts 48-60 hours (8) the temperature of the 
cooling agent entering the crystallizer is -8...-5 0 С, leaving it at -3...0 0 С. 
The temperature of the cooling water supplied to the crystallizer is -5 0 С at 
the inlet and +5 0 С at the outlet. 
The temperature of the separated salad oil in the equipment is 5...8 0 С, and 
this oil (9) is supplied to the frame filters. Here the salad oil is filtered and the 
palmitic fraction remains in the filter. That is, when the oil is cooled, the solid 
fraction is separated. The process is carried out at a pressure of 0.2 mPa (2 kg 
s/cm2). 
In the filter press, salad oil separated from palmitin is discharged through a 
nozzle on the upper part of the equipment, and with its own flow, it falls into the 
tanks where the filtered salad oil is collected (10). After that, the solid fraction in 
the filter press is poured into the container (12) where the palmitin is collected 
after the palmitin is dissolved. Palmitin salad oil retained in the filters is separated 
and warmed with cottonseed oil (12) and dropped into the palmitin tank. Hot water 
is installed in the tank so that the palmitin does not solidify in this tank. From this 
tank, palmitole (13) is pumped to the refined oil tank in the refinery. Here palmitin 
is mixed with other oils, deodorized and sent to the margarine shop. Salad oil (10) 
is sent from the tank (11) to the deodorizer by means of a pump (14). Here the oil 
is 220... Heat under vacuum to 235 0 С. The deodorized salad oil is cooled in the 
cooler (19) and transferred to the mixer. 
Citric acid up to 0.3% is added there from the other side from tank (21) and 
pump (22). The purpose of processing with citric acid is to prevent oxidation of the 
oil. Citric acid is added as an antioxidant. The oil processed with citric acid is 
filtered in polished filters (23, 24) and sent to the tanks where the deodorized salad 
is stored (15), from where a part of the salad oil is sent to packaging using a pump 
(16), and the other part is used for the production of mayonnaise. 
After filtering, the deodorized salad oil is transferred to the oil tank (28) by 
means of a pump (16). From there, the casting equipment (30) is fed through the 
intermediate tank (29). PET bottles are transferred from the other side to the 
pouring equipment. PET bottles are transferred using a heater (26), a forming 
machine (27). A pressure of 25 kg/cm2 is applied to the forming machine (27) 
through the compressor (25). 
The salad oil packed in PET bottles is weighed on a scale (31) and sealed with 
a lid on a capping device (32). After inspection at the control desk (33), the 
finished product is packed in block form in the labeling equipment (34) and 
blocking equipment (35) and sent to the warehouse using tape (36). 
Physicochemical parameters of deodorized salad oil 
Table-8 
No 
Indicator name 
Standards for pressed cottonseed oil 
deodorized 
Not deodorized 


38 
High grade 

variety 
Smell and taste 
Odorless, 
tasteless 
salad oil 
Characteristic 
of 
unrefined oil 
1. 
Transparency, 0 С 
temperature 
Transparency 
After 7 hours, 
wait 
After 6 hours, wait 
2. 
Color number, in 
red unit, not more than 
35 in yellow unit 

1 sort 
3. 
Acid number, mg 
KOH/g, not much 
0.2 
0.3 
0.3 
4. 
Mass percentage of 
moisture and volatile 
substances, % not much 
0.1 
0.1 
0.1 
5. 
The mass fraction 
of non-oily compounds 
(mass sedimentation), % 
is not much 
Not available 
6. 
Soap 
(quality 
indicator) 
Not available 
7. 
Peroxide 
number, 
mmol/kg, 
1"O
2
", 
not 
much 
7.0 
7.0 
7.0 
8. 
Determination 
of 
presence 
of 
solvent 
(gasoline) in oil (by 
quality). 
234 
234 
234 
Production of mayonnaise: Mayonnaise is an emulsion of the MS type, a food 
product, and includes vegetable oil, dry milk, egg powder, sugar, salt and other 
nutritional and flavoring additives. It is used as a by-product to increase the 
nutritional value of food, increase appetite and improve food digestion. 
Mayonnaise is a product of high biological value. Its composition includes: 1) 
vegetable oils (sunflower, cotton, soybean oil). These oils are not only a source of 
calories, but also a source of essential acids (olein, linole). These acids help reduce 
the amount of cholesterol in the blood; 2) egg powder is also considered as a 
source of proteins, necessary for improving liver function. 
Mayonnaise recipe and assortment: Mayonnaises are divided into kitchen, 
dietary and children's groups with added spices, flavoring and thickening additives: 
Mayonnaise recipe 
Table-9 


39 
Components 
A type of mayonnaise 
Provençal 
spring 
mustard
Vegetable oil 
65.4 
65.6 
35.0 
Egg powder 
5.0 
5.0 
6.0 
Dry milk 
1.6 
1.6 
2.5 
Sugar 
1.5 
1.5 
3.0 
Salt 
1.2 
1.3 
2.0 
Soda 
0.05 
0.05 
0.05 
Mustard powder 
0.75 
0.75 
1.2 
80% acetic acid 
0.65 
0.75 
1.1 
Black pepper 

0.175 

Garmdori 

0.05 

Water 
23.85 
23.2 
49.15 
Total 
100% 
100% 
100% 
Getting mayonnaise on a small power line. Currently, small enterprises 
producing mayonnaise are increasing. In order for the quality of the finished 
product to be at the required level and meet the standard requirements, it is 
necessary to use high-quality raw materials, equipment that ensures the formation 
of a durable emulsion, and to observe the technological regime and sanitary-
hygienic requirements. "Bagri" activator for homogenization of coarse mayonnaise 
emulsion was developed and put into production. The equipment consists of a 
conical rotor and a stator with a rotation frequency of 50 s-1. 
The constructive structure of the equipment allows production of high-quality, 
stable emulsion mayonnaise with moderate colloidal structure. 
Based on the "Bagri" activator, "Malish" lines with different production 
capacities were created. Small businesses can be equipped with them. 
Technological scheme of mayonnaise production on the "Malish" line 
Dry components are weighed on a scale (1) and mixed with the required 
amount of water according to the recipe in a mixer (2). Egg powder is added to the 
resulting mixture. Mayonnaise paste (3) is pumped into mixer (4) and vegetable oil 
and vinegar solution are added according to the recipe. Mayonnaise emulsion is 
sent to the activator "Bagri" (8) with the help of a pump through the block of filters 
(5). The resulting finely dispersed mayonnaise emulsion is fed to the ready-made 
mayonnaise container (7) and transferred to the packaging machine. 


40 
Figure 9. The technological scheme of making mayonnaise on the "Malish" 
type line 
Extending the shelf life of mayonnaise produced in the "Malish" line is 
achieved by production in aseptic conditions, that is, by pasteurization with a pot 
and aseptic packaging. For this, long-term (60 minutes) pasteurization is carried 
out in "Bakelin" mixer, which consists of a special bath. These devices consist of 4 
electric heaters of the 0.86-0.1 type, the power of which is 3.15 kW, which are 
used for heating and pasteurization at 950 С. 
In aseptic packaging, the sealing materials used are treated before use. 
The organoleptic properties of food products produced in aseptic technology 
increase and meet the physiological requirements of nutrition. Mainly foreign 
aseptic packaging equipment is used. 
Soap production technology 
What is soap itself? Soap is the salts of high molecular fatty and naphthenic 
acids. Soaps used for washing and cleaning are sodium and potassium salts of fatty 
acids consisting of 10 to 20 carbon atoms. Salts of fatty acids containing less than 
10 carbon atoms are not washable. 
Soap is formed due to the neutralization of fatty acids with caustic alkalis and 
carbonated alkalis. 
Also, soap is produced as a result of saponification of neutral oils. 
The fatty acid molecule reacts with the soap to form sour soap. 


41 
RCOONa + RCOOH RCOONa – RCOOH
Sour soap 
Sour soaps do not dissolve in water. 
Soap can be hard or soft, depending on the order of oils and fatty acids used 
to make soap. Hard soap is produced from hard fat or fatty acids, and soft soap is 
produced from soft fat or fatty acids. In addition, potassium soap is milder than 
sodium soap. 
It is known that there are types of household soaps and perfume soaps. Their 
main difference is the types and amount of raw materials used to make soap. For 
example, household soaps with 72% and 60% are produced in the industry. The 
value expressed as a percentage indicates the amount of fatty acids used for 
cooking soap. For perfume soaps, this indicator will not be less than 80%. 
Physico-chemical properties of soaps. Soap dissolves well in alcohol, hot 
water, and potassium soaps dissolve better than sodium soaps. An increase in the 
number of carbon atoms in the soap molecule leads to a decrease in its solubility. 
Soap is insoluble in organic solvents. Compared to saturated fatty acid soaps, 
unsaturated fatty acid soaps dissolve better, and increasing temperature increases 
the solubility of the soap. Sour soaps are difficult to dissolve in water. 
Liquidization temperature of anhydrous soaps is 225-270 0 С. Soaps have the 
properties of wetting, foaming. 
Under the influence of acids, soaps break down and turn into fatty acids 
again: 
2RCOONa + H2SO4 2RCOOH + Na2SO4 
A solution of soap in water is surfactant, which means it lowers the surface 
tension of water. 
A foam-cellular dispersion system in which air bubbles are surrounded by a 
soap film. The stability of the foam is determined by the ratio of the reduced foam 
volume after 5 minutes to its initial size. Saturated high molecular weight fatty acid 
soaps (S16,S18) form fine and stable foam. Medium molecular fatty acids make 
soap foam. The foaming properties of high molecular weight fatty acids increase 
when heated. 
To know washability, we must first define what wettability is. In good 
wetting, the liquid spreads evenly over the solid body and seeps into its cracks. 
Liquids with low surface tension have good wetting properties. To improve 
wetting, it is necessary to reduce the surface tension of the liquid. It is known that 
alcohol and kerosene wet the surface better than water. When the temperature of 
water increases from 20 to 80 0 С, the surface tension decreases from 73 to 62 
erg/cm3, if 0.1% of soap is added to water, the surface tension of water decreases 
to 26.5 erg/cm2. Therefore, the soap solution soaks well into the fabric. 
The recipe of the soap determines its physico-chemical properties, cost, 
preparation technology. Therefore, formulation is one of the main processes of 
quality soap production. When creating a recipe, it is necessary to choose such oils 
and fatty acids that the soap should be hard and elastic, well soluble, low 
consumption and high washability. In addition, the titer (melting temperature) of 


42 
the fatty mixture for household soap should be 35-42 
0
С. The titer of the oil 
mixture for perfume soap should be 31-41 
0
С. 
Below is the recipe for household soap 
table-11 
Raw material 
72% soap 
60% soap 
Hello 
38-60 
22-46 
Beef fat 
5-17 
5-12 
Soapstock Yo.K. 
0-7 
23-25 
S.Yo.K. 
12-40 
16-48 
Perfume soap recipe 
table-12 
Raw material 
1g extra 
2 gr 
3 gr 
Animal fats 
70-60 
33-27 
17-13 
DYOKE 

32-38 
52-48 
SYOK C10-C16 

16-10 
14-16 
Coconut oil 
13-17 
6-8 
3-5 
The processes of cooking and processing soap are carried out in the following 
order: saponification, complete saponification, salting, tempering, grinding, 
processing of the soap base and making it into a commodity state. The processes of 
saponification, full saponification, salting, tempering, grinding are called soap base 
cooking. Baking of soap base is carried out periodically in soap cooking pots or in 
continuous (BSHM, TNB) devices. 
Since saponification is carried out using sodium carbonate (calcium soda), it 
is called carbonate saponification in the industry. In carbonate soaping, a 
calculated amount of 28-30% sodium carbonate solution is added to the boiler, 
heated to boiling point with hot steam, and hot fatty acids are introduced according 
to the recipe (fatty acids first, then synthetic fatty acids). If the fatty acids are 
added first and then the soda, a sour soap may be formed. If the amount of 
Na2CO3 in the soap mass does not exceed 0.5%, carbonate saponification is 
considered complete. 
Complete saponification is continued with a 40-42% NaOH (caustic soda) 
solution. The NaOH alkali is added to the pot in portions while boiling and stirring. 
The excess amount of alkali should be 0.1-0.2% at the end of cooking the soap 
mass. Complete saponification with caustic soda is considered complete after 
boiling for 30 minutes, when the alkali content remains unchanged. 
During salting, a 20% NaCl solution is added to the soapy glue by boiling and 
stirring with hot steam. When the salting is finished, the mass boils evenly. A thin 
layer of glue flows from the pulley. 
Curing is a process after salting, the soap mass is cured for several hours: the 
main part (soap core) + soap glue is formed. The main part consists of 60-63% 
fatty acids. The duration of waiting depends on the capacity of the boiler. For 
example, if the boiler has a capacity of 50 m
3
, the heating will continue for 20-30 


43 
hours. As a result of tempering, soap kernel and sub-soap alkali are separated. The 
alkali under the soap is separated and the soap core is sent to dry. 
Polishing is mainly used in the production of perfumed soaps. This process is 
carried out with hot water or with NaOH and NaCl solutions added in portions by 
boiling. The amount of alkali is kept at 0.5-0.8%, NaCl at 0.7-1.0%. Smoothing is 
finished after an hour of intensive boiling after the addition of the last portion of 
water. The composition of the finished perfume soap base is as follows: fatty acids 
more than 61.5%, NaOH 0.06-0.12%, unsaponified oil not more than 0.2%, NaCl 
content not more than 0.4% should not be much. 
Processing and commercialization of the soap base The commercial soap is 
cooled, dried, machined, molded, cut into pieces, sealed, and the finished soap bars 
are placed in boxes. 
After cooling, drying and mechanical processing, perfume soap is added with 
fragrances, dyes, anti-oxidants and other additives, further mechanical processing, 
molding, cutting, and ready-made the pieces are dried, sealed and packed into 
boxes. 
Figure 10 
Cooling and drying are combined in modern equipment. The essence of the 
method is that the heated (120-140 0 С) soap base is sprinkled in a vacuum 
chamber, 15-40 mm.cm.ust. the residue is dried under pressure and cooled. The 
soap crumb coming out of the chamber is mechanically processed in a screw-press 
and released in the form of brusok. Then it is cut into pieces and stamped. The 
finished product is placed in soap boxes. 
Review questions 
1. Classification of food industry enterprises by types of raw materials. 
2. Types of losses during storage of raw materials and their nature. 
3. Classification of food industry enterprises by types of raw materials. 
4. General scheme of the oilseed processing enterprise. 
parameters. 
5. Hydrogenation of oils in autoclaves. 
6. The principle scheme of continuous hydrogenation. 
7. Catalysts used for hydrogenation of oils. 
10. What is margarine? 
11. Nutritional value of margarine. 
12. Culinary oils recipe. 
13. Milk preparation, pasteurization. 
14. Raw materials for soap production. 
"Basic" words and phrases 
Oil - oil industry, oil refining, vegetable oil, crude oil, phosphatide, free fatty 
acids, additives, hydration, phosphatide concentrate, alkaline refining, crude 
forpress oil, precipitation, refining. 
Oil - oil industry, oil refining, vegetable oil, crude oil, phosphatide, free fatty 
acids, additives, hydration, phosphatide concentrate, alkaline refining, crude 
forpress oil, sedimentation, tempering, centrifugation, filtration, adsorbent, oil 
color, pigments, gossypol, activated earth, oil capacity, amount of adsorbent, 


44 
deodorization, volatile substances, aromatic substances, vacuum, vapor pressure, 
deodorization, steam ejector. Margarine, cooking oil, dairy margarine, emulsion, 
flavoring, salt, milk, sugar, emulsifier, vitamin, pasteurization, sterilization, recipe, 
flavorings, components, emulsification, mixing, moderation, supercooling, crystal 
structure, monolithic, vatator (supercooler). 

Download 1.42 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   52




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling