F(x)=x+5π funksiyani [-π; π] oraliqda fur'ye qatoriga yoying
f(x) = 6π + ∑[n=1 to ∞] [(2/n + 10/n²) sin(nx)]
Download 279.03 Kb.
|
2-amaliy topshiriq
- Bu sahifa navigatsiya:
- Vazifa: f(x)=x^2-4 funksiyani (0;1) oraliqda furye qatoriga yoying. Javob
f(x) = 6π + ∑[n=1 to ∞] [(2/n + 10/n²) sin(nx)]
Bu formulada n butun sonlar uchun sin(nx) ni hisoblashimiz mumkin. Chunki bₙ = 0, cos(nx) koeffitsiyenti mavjud emas. C++ kodi: #include #include const double pi = 3.14159265358979323846; double calculate_a0() { return 6 * pi; } double calculate_an(int n) { return (2.0 / n + 10.0 / (n * n)) * sin(n * pi); } double calculate_bn() { return 0; // bn = 0 for this function } double calculate_fourier_series(double x, int num_terms) { double result = calculate_a0(); for (int n = 1; n <= num_terms; ++n) { result += calculate_an(n) * sin(n * x); } return result; } int main() { double lower_bound = -pi; double upper_bound = pi; int num_terms = 10; for (double x = lower_bound; x <= upper_bound; x += 0.1) { double f_x = x + 5 * pi; double fourier_series = calculate_fourier_series(x, num_terms); std::cout << "x = " << x << ", f(x) = " << f_x << ", Fourier series = " << fourier_series << std::endl; } return 0; } Vazifa: f(x)=x^2-4 funksiyani (0;1) oraliqda fur'ye qatoriga yoying. Javob: f(x) = a₀ + ∑[n=1 to ∞] (aₙ cos(nx) + bₙ sin(nx)) Bu formulda a₀, aₙ, va bₙ - Fourier koeffitsiyentlaridir. Biz f(x) = x^2 - 4 funksiyasini yoyib berish uchun, koeffitsiyentlarni topishimiz kerak. a₀ ni topish uchun, f(x) ni 0 dan 1 gacha integrallaymiz va natijani 1 ga bo'lib 2 ga bo'lib bo'limaymiz: a₀ = (1/1) ∫[0 to 1] (x^2 - 4) dx = ∫[0 to 1] (x^2 - 4) dx = [(x^3/3 - 4x) | [0 to 1] = [(1/3 - 4) - (0 - 0)] = (-11/3) aₙ ni topish uchun, f(x) ni 0 dan 1 gacha integrallaymiz, cos(nx) bilan ko'paytiramiz va natijani 1 ga bo'lib 2 ga bo'lib bo'limaymiz: aₙ = (1/1) ∫[0 to 1] (x^2 - 4) cos(nx) dx = ∫[0 to 1] (x^2 - 4) cos(nx) dx = [(x^2/n sin(nx) - 2/n^2 cos(nx)) | [0 to 1] = [(1/n sin(n) - 2/n^2 cos(n)) - (0 - 0)] = (1/n sin(n) - 2/n^2 cos(n)) bₙ ni topish uchun, f(x) ni 0 dan 1 gacha integrallaymiz, sin(nx) bilan ko'paytiramiz va natijani 1 ga bo'lib 2 ga bo'lib bo'limaymiz: bₙ = (1/1) ∫[0 to 1] (x^2 - 4) sin(nx) dx = ∫[0 to 1] (x^2 - 4) sin(nx) dx = [(-x^2/n cos(nx) + 4/n^2 sin(nx)) | [0 to 1] = [(-1/n cos(n) + 4/n^2 sin(n)) - (0 - 0)] = (-1/n cos(n) + 4/n^2 sin(n)) Ushbu koeffitsiyentlarni topganimizga ko'ra, f(x) = x^2 - 4 funksiyasining Fourier qatori quyidagicha bo'ladi: f(x) = (-11/3) + ∑[n=1 to ∞] [(1/n sin(n) - 2/n^2 cos(n)) cos(nx) + (-1/n cos(n) + 4/n^2 sin(n)) sin(nx)] Bu formulada a₀ = -11/3 koeffitsiyenti hisoblanadi. Natijada, f(x) ni Fourier qatori quyidagicha bo’ladi: Download 279.03 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling