Guruh: 5es 22 kem bajardi: Usmanov Jasur Abdujabbar oʻgʻli Qabul qildi: Toshkent -2023 Reja: Matritsalar


Download 126.93 Kb.
bet3/3
Sana27.01.2023
Hajmi126.93 Kb.
#1132718
1   2   3
Bog'liq
MATEMATIKA NEWWWWWWWWWWWWWW

3


  1. 2 41  2314 (10);



  1. 213 42133 214463 84;


1 2 5 6 15  27 16  28 19 22

  1. 3 47 8 35  47 36  48 43 50; 

 2 1
 
4. 03 4231 02 43 






 23 1(1) 2 2 10

  33  4(1)  3 2  40 03  2(1) 0 2  20


2 4 13   5
 
 3 4  43  13
0 4  23  2

4 11

 6 0 .
0 6 

Agar A matritsaning satrlarini A1,A2,...,Am bilan va B matritsaning ustularini B1,B2,...,Bn bilan belgilansa, u holda matritsalarni ko‘paytirish qoidasini quyidagi ko‘rinishda yozish mumkin:

A1
 
C AB   A...2 B1
   Am 

B2

...

A1B1

Bn  A...2B1

AmB1


A1B2
A2B2
...
AmB2

...
...
...
...

A1Bn

A2Bn .
... AmBn 

Matritsalarni ko‘paytirishda A4 yozuv ikkita bir xil matritsani ko‘paytmasini bildiradi: A2 AA. Shu kabi A3 AAA... An AA...A.
n marta
2 1 1
1.5-misol. f (x)2x x 5 va A  0 2 bo‘lsin. f (A)ni toping.

Yechish. Matritsa ko‘rinishdagi f (A) funksiyaga o‘tishda  sonli qo‘shiluvchi I ko‘paytma bilan almashtiriladi, bu yerda I - birlik matritsa.
2  2 1 3 5 0 6 1
0 4  0 4  0 5 0 5.
Umuman olganda matritsalarni ko‘paytirish nokommutativ, ya’ni ABBA. Masalan, 1n o‘lchamli A matritsaning n1 o‘lchamli B matritsaga AB ko‘paytmasi sondan, ya’ni 11 o‘lchamli matritsadan iborat bo‘lsa, BA ko‘paytmasi n- tartibli kvadrat matritsa bo‘ladi.
Bir xil tartibli A va B kvadrat matritsalar uchun ABBA bo‘lsa, A va B matritsalarga kommutativ matritsalar, ABBA ayirmaga kommutator deyiladi. 1.6-misol. A 02 13 va B  34 51 matritsalarning kommutatorini toping.


Yechish.







AB 02


1 3
34 

5 2314 251(1) 10 9 
1 03 34 05 3(1) 12 3,

BA34


5 2
10

1  32  50 31 53  6 18
3 42  (1)0 41 (1)3 8 1 , 

AB BA1012 93 86 181  44 94.

Matritsalarni ko‘paytirish amali ushbu xossalarga bo‘ysunadi 5.
1o. A matritsa mn o‘lchamli va B,C matritsalar np o‘lchamli bo‘lsa, A(B C)  ABAC bo‘ladi;
2o. A matritsa mn o‘lchamli va B,C matritsalar np o‘lchamli bo‘lsa, A(B C)  ABAC bo‘ladi;
3o. A,B,C matritsalar mos ravishda mn,np, pq o‘lchamli bo‘lsa,
A(BC)  (AB)C bo‘ladi;
4o. (4) A,B,I,O moslashtirilgan matritsalar va , skalyar sonlar bo‘lsa, u holda:
1) (A)(B)  ()(AB); 2) A(B) (A)B (AB);
3) AI IAA; 4) AOOAO; 5) (AB)T BT AT .
5o. A,I,On- tartibli kvadrat matritsalar va p,q manfiy bo‘lmagan butun
sonlar bo‘lsa, u holda:
1) ApAq Apq; 2) (Ap )q  (A) pq; 3) A1 A; 4) A0 I.
Isboti. Xossalardan ayrimlarini ta’riflar yordamida isbotlaymiz va ayrimlarining to‘g‘riligiga misollarni yechish orqali ishonch hosil qilamiz.
2o-xossani qaraylik. A (aij ) matritsa mn o‘lchamli va B  (bij ), C  (cij ) matritsalar np o‘lchamli bo‘lsin. U holda 2 va 3-ta’riflarga ko‘ra istalgan i, j da birinchidan B C  (bij cij ) yoki
n n n n
A(B C)  aik (bkj ckj )  (aikbkj aikckj )  aikbkj  aikckj
k1 k1 k1 k1
va ikkinchidan
n n
aikbkj  aikckj AC BC
k1 k1
bo‘ladi. Oxirgi ikkita tenglikdan A(B C)  ABAC bo‘lishi kelib chiqadi 6.
6o- xossani qaraylik. A (aij ) va B  (bij ) bo‘lsin. Bundan AT  (aij) va
BT  (bij) bo‘ladi, bu yerda aij  a ji , bij bji. U holda 3-ta’rifga ko‘ra istalgan i, j da birinchidan
n n
AB  aikbkj yoki (AB)T  a jkbki
k1 k1 va ikkinchidan
n n n
a jkbki  bkia jk  bikaik  BT AT
k1 k1 k1
bo‘ladi. Bundan (AB)T BTAT bo‘lishi kelib chiqadi 7.
3o-xossani to‘g‘riligiga misol yechish orqali ishonch hosil qilamiz.
3 1  2 4 1
A (1 2), B  0 4, C  5 0 2 bo‘lsin.
U holda

3 1  2 4 1 11 12
BC 0 4 5 0 2  20 0

1
,
8

11 12 1
A(BC)  1 2 20 0 8  29 12
3 1
AB  1 20 4  3 7,


17,

 2 4 1
(AB)C  3 75 0 2  29 12


17.

1. Mashqlar


Demak, A(BC)  (AB)C.
T

1.1. A kvadrat matritsa bo‘lsin. A A simmetrik matritsa bo‘lishini ko‘rsating.
3 1 0 0
       
1.2. A4 matritsani X 0, Y 1 va Z 0 matritsalarning chiziqli
5 0 0 1
kombinatsiyasi ko‘rinishida ifodalang.
2 1 10
1.3. a3b 1 5  bo‘lsa, a va b ni toping.
1.4. Matritsa 30 ta elementga ega bo‘lsa, u qanday tartiblarda berilishi mumkin?
1.5-1.1.8 masqlarda A,B matritsalar va , sonlar berilgan. AB matritsani toping:
1 1 1  2 3 1
1.5. A2 3 0, B1 0 2, 1,  2.

 0 3 1 2
   
1.6. A2 1, B 3 1,  2, 3.
 1 4 2 5
 2 1 0  3 1 1
   
1.7. A1 3  2, B  0 1 0, 3, 2.
 2 3 1   4 3 2

 2 1 2
 
1.8. A 5 3 3, BE, 1, .
1 0 2
1.9. A va B moslashtirilgan matritsalar bo‘lsin. Quyidagilarni ko‘rsating:

  1. agar A matritsa satr matritsa bo‘lsa, u holda AB satr matritsa bo‘ladi;

  2. agar B matritsa ustun matritsa bo‘lsa, u holda AB ustun matritsa bo‘ladi.

1 2 x 0 x 0

    1. 3 30 y9 0bo‘lsa, x va y ni toping.

    2. Agar A matritsa 33 o‘lchamli va C esa 55 o‘lchamli bo‘lsa, ABC ko‘paytma ma’noga ega bo‘lishi uchun B matritsa qanday o‘lchamda bo‘lishi kerak?

1 0

    1. A  1 0 matritsa berilgan. AB ko‘paytmani nol matritsaga aylantiruvchi B matritsani


toping.
1.13-1.1.16 mashqlarda A va B matritsalar berilgan. AB matritsani toping:
 2 0 1 1 2

    1. A1 3, B3 2 0.

2 1
  4 2

    1. A0 1, B2 3.

3 2
1 1 4 1 3
   

    1. A3 0 1,B 0 1.

2 1 0  2 1
 1 1 2 4 0 2
   

    1. A2 0 3,B2 1 0 .

 1 1 0 0 1 3
2  2  1 4

    1. A  2 3, B   2 5, C B 3I bo‘lsa, (AB)C matritsani toping.

3 1 4 5 1 4

    1. A  2 4, B  2 6, C   5 3 bo‘lsa, A(BC)matritsani toping.

 4 2 3  0 1
    T 2

    1. A2 1 6,B 3 2 matritsalar berilgan. AB, B B, A matritsalarni

 1 2 2 2 0
toping.
1 2 2

    1. A0 3 va f (x)  3x 5x 4 bo‘lsin. f (A) ni toping.


1 0 20

    1. A  1 1 bo‘lsa, A ni toping.



    1. Agar A2 I va A matritsa 22 o‘lchamli bo‘lsa, Ani toping.

Adabiyotlar

      1. Yo.U.Soatov. Oliy matematika 1-tom., T, “O’qituvchi” 1992

      2. Yo.U.Soatov. Oliy matematika 2-tom., T, “O’qituvchi” 1992

      3. Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162169.

      4. Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp.

96-99.

      1. Sh.R.Xurramov ”Matematika” Toshkent- 2016.


1 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp. 92-112

2 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp. 92-112

3 E.Kreyszig. Advancet engineering Matematics. Copyright. 2011, pp. 255-265

41 1 1 1 1 1 1 0
f (A)  2AA  5I  20 2 0 20 2  50 1


5 Lay, David C. Linear algebra and is applications. Copyright. 2012, pp. 92-112

6 E.Kreyszig. Advancet engineering Matematics. Copyright. 2011, pp. 255-265

7 E.Kreyszig. Advancet engineering Matematics. Copyright. 2011, pp. 255-265

Download 126.93 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling