Guruh talabasi Nazirjonov Shohzodning Analitik geometriyafanidan
Download 0.82 Mb.
|
1.2-§.Tekislikda Dekart koordinatalar sistemasini almashtirish.
Orientasiya: Bir vektordan ikkinchisiga qisqa burilish yo'nalishi soat strelkasi yo'nalishiga qarama-qarshi bo'lsa, bu vektorlar o'ng ikkilik, aks holda chap ikkilik tashkil qiladi deyiladi. Bazis sifatida biror ikkilik tanlansa, biz orientatsiya tanlab olingan deb hisoblaymiz. Bizga {ij} va {i j} ortonormal bazislar berilgan bolsin. Bu bazislar yordamida kiritilgan Dekart koordinatalar sistemasilarini mos ravishda O xy va O 'x'y' bilan belgilaylik. Nuqtaning “eski” va “yangi” koordinatalari orasidagi bog'lanishni topamiz. "Yangi” koordinatalar sistemasi markazining “eski” koordinata sistemasidagi koordinatalarini (a, b ) bilan belgilayli Tekislikda M nuqta berilgan bo'lib,uning Oxy va O 'x'y' sistemalardagi koordinatalari mos ravishda (x,y) va (x\y') juftliklardan iborat bo'lsin. Biz quyidagi tengliklarga ega bolamiz: Bu ifodalarni: + ga qoyib tenglikni hosil qilamiz. Bazis vektorlari{i;j} bazislar bir xil orientatsiyaga ega. Bu holda agar Fi i bilan j vektorlar orasidagi burchakni belgilasak, j va j shtrix vektorlar orasidagi burchak ham Fi ga teng bo'ladi. Yuqoridagi (1) tengliklaming har ikkalasini i va j vektorlarga skalyar ko'paytirib, , = formulalarni olamiz. Agar {i;j} va {I’vaj’} bazislar har xil orientatsiyaga ega bo‘lsa,jvaj’ vektorlar orasidagi burchak PI-FI ga teng bo’ladi. Bu holda ( 1 ) tengliklarning har birini i va j vektorlarga skalyar ko'paytirib , = formulalarni hosil qilamiz. Bu formulalarni (2) formulalarga qo'yib, mos ravishda quyidagi ikkita formulalarni olamiz: x= y= Bu holda o'tish determinanti uchun tenglik o'rinli. Bu holda o'tish determinanti uchun tenglik o'rinli. Ikkinchi holda bazislaming orientatsiyalari har xil va koordinatalarni almashtirish formulalari x= y= ko'rinishda bo'ladi. Bu holda o'tish determinanti uchun o'rinli bo'ladi. Demak, koordinatalar sistemesini almashtirganimizda o'tish matritsasining determinanti musbat bo'lsa, oriyentatsiya o'zgarmaydi. Agar o'tish matritsasining determinanti manfiy bo'lsa, oriyentatsiya qaramaqarshi oriyentatsiyaga o'zgaradi. Download 0.82 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling