Haqiqiy yevklid fazosida chiziqli almashtirishlar


Ta'rif 7 Vektor tizimi a


Download 212.07 Kb.
bet10/11
Sana31.12.2022
Hajmi212.07 Kb.
#1073393
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
KURS ISHI YEVKLID FAZOSIDA CHIZIQLI ALMASHTIRISHLAR

Ta'rif 7
Vektor tizimi a 1 , a 2 , …, a t Evklid fazosi deyiladi ortogonal , agar bu vektorlar juft ortogonal bo'lsa, ya'ni.
(a ia j) = 0 "i¹ ji,j=1,2,…,m.
Vektor tizimi a 1 , a 2 , …, a t Evklid fazosi deyiladi ortonormal (yoki ortonormal ) agar u ortogonal bo'lsa va uning har bir vektori normallashtirilgan bo'lsa, ya'ni.
(a ia j) =  , i,j= 1,2, …, m.
Ortogonal vektorlar tizimi quyidagi xususiyatlarga ega:
1. Agar  nolga teng bo'lmagan vektorlarning ortogonal sistemasi, keyin sistema  bu sistemaning har bir vektorini normallashtirish natijasida olingan qiymat ham ortogonaldir.
2. Nolga teng bo'lmagan vektorlarning ortogonal tizimi chiziqli mustaqildir.
Agar biron-bir ortogonal, demak, ortonormal vektorlar tizimi chiziqli mustaqil bo'lsa, unda bunday tizim berilgan fazoning asosini tashkil qilishi mumkinmi? Bu savolga quyidagi teorema javob beradi.
Teorema 3
Har birida P- o'lchovli Evklid fazosi ( ) ortonormal asos mavjud.
Isbot
Teoremani isbotlash degani topmoq bu asos. Shuning uchun biz quyidagi tarzda harakat qilamiz.
Berilgan Evklid fazosida ixtiyoriy asosni ko'rib chiqing ( a 1 , a 2 , …, a n), undan ortogonal asos quramiz ( g 1 , g 2 , …, g n), keyin esa bu asosning vektorlarini normallashtiramiz, ya'ni. ruxsat bering. Keyin vektorlar sistemasi ( e 1 , e 2 ,…, e n) ortonormal asos hosil qiladi.
Shunday qilib, B :( a 1 , a 2 , …, a n) ko'rib chiqilayotgan fazoning ixtiyoriy asosidir.

Download 212.07 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling