Hisoblash matematikasi va axborot tizimlari” kafedrasi Abdulhakimova Dilafruz Hoshimjon qizining
-Teorema. (3) ayirmalı formulaning (9) xatolik funksionalining normasi uchun ifoda o'rinli, bunda va Isbot
Download 60.55 Kb.
|
Kurs ishi
- Bu sahifa navigatsiya:
- FOYDALANILGAN ADABIYOTLAR RO‘YXATI
2-Teorema. (3) ayirmalı formulaning (9) xatolik funksionalining normasi uchun
ifoda o'rinli, bunda va Isbot. bu yerdan va ekanligini inobatga olib quyidagini olamiz (18) Bundan ko'rinadiki ni hisoblash uchun dastlab ni hisoblash kerak. Endi oxirgi tenglikni inobatga olib (18) dan uchun quyidagi hisoblashlarni bajaramiz Demak, teorema isbot bo'ldi va l-masala yechildi. Shunday qilib ushbu ishda, fazoda (3)-ko'rinishdagi optimal ayirmali formula qurish uchun xatolik funksionali normasining ko'rinishi topildi, keyingi ishlarda 2-masalani yechish bilan shug'ullanamiz. FOYDALANILGAN ADABIYOTLAR RO‘YXATIBabuska I , Vitasek E , Prager M. Numeral processes for solution of differential equations: - Mir, Moscow, 1969. 369p. Babuska I, Sobolev S. Optimization of methods:- Apl. Mat., 10, 9-170, 1965 . Соболев С.Л. Введение а теорию кубатурных формул: - Москва, Наука,, 1974, 808 c Соболев С.Л., Васкевич В.Л. Кубатурные формулы: - Новосибирск, 1996, 184 c. Shadimetov Kh M. Weighted optimal cubature formulas in the Sobolev periodic space .:- Siberian journal of computational mathematics. Novossibirsk, 1999, v.2, pp. 185-195. Shadimetov Kh.M. On optimal lattice quadrature and cubature formulas.:- Dokl. Russian Academy of Sciences. Moscow, 2001, v.376, no. 5. pp. 597-599. Shadimetov Kh M. Fonctional statement of the problem of optimal difference formulas.: - Uzbek mathematical Journal, 2015, no. 4, pp.179-183. Shadimetov Kh M., Mirzakabilov R.N. The problem on construction of difference formulas.: -Problems of Computational and Applied Mathematics.- Tashkent, 2018, no. 5 (17). pp. 95-101 Akhmedov D.M, Hayotov A.R, Shadimetov Kh.M. Optimal quadrature formulas with derivatives for Cauchy type singular integrals.:-Applied Mathematics and Computation,Elsevier, 2018, V.317, pp. 150-159. Boltaev ND, Hayotov A.R., Shadimetov Kh.M. Construction of Optimal Quadrature Formula for Numerical Calculation of Fourier Coefficients in Sobolev space .:- American Journal of Nunerical Analysis, 2016, v. 4, no. 1 p. 1-7. Boltaev A. K. Oб экстремальной функции одной оптимальной квадрвтульной формулы.. //Узбекиский математический журнал.-Ташкент, 2011, №2-C, 57-65. Shadimetov Kh M, Hayotov AR. Optimal quadrature formulas in the sense of Sard in space.:- Calcolo, Springer. 2014. V 51. p. 211-213. Shadimetov Kh M, Hayotov A.R. Construction of interpolation splines minimizing semi-norm in space.: BIT Numer Math, Springer, 2013, V.53, pp. 545-503. Shadimetov Kh M., Hayotov A.R., Akhmedov D.M Optimal quadrature formulas for Cauchy type ssingular integrals in Sobolov space.:- Applied Mathematics and Computation, Elsevier, 2015, V.263, pp. 302-314. Shadimetov Kh.M., Mirzakabilov R.N. On a construction method of optimal difference formulas.:-AIP Conference Proccedings, 2365, 020032, 2021 Ahlberg J.H, Nilson E.N, Walsh J.L, The theory of splines and their applications, Mathematics in Science and Engineering, New York: Academic Press, 1967. de Boor C., Best approximation properties of spline functions of odd degree, J. Math. Mech. 12, (1963), pp.747-749. Hayotov A.R, The discrete analogue of a dierential operator and its applications. Lithuanian Mathematical Journal. 2014.-vol54. No2, pp.290-307. Hayotov A.R , Milovanovic G.V, Shadimetov Kh.M, Optimal quadrature formulas and interpolation splines minimizing the semi-norm in space // G.V.Milovanovic and M.Th.Rassias (eds.), Analytic Number Theory, Approximation Theory, and Special Functions, Springer, 2014, - pp.573-611. Schoenberg I.J, On trigonometric spline interpolation, J. Math. Mech. 13, (1964), pp.795-825. Schumaker L., Spline functions: basic theory, Cambridge university press, 2007, 600 p. Sobolev S.L., On Interpolation of Functions of n Variables, in: Selected Works of S.L.Sobolev, Springer, 2006, pp. 451-456. Sobolev S.L., Introduction to the Theory of Cubature Formulas, Nauka, Moscow, 1974, 808 p. Sobolev S.L, The coecients of optimal quadrature formulas, in: Selected Works of S.L.Sobolev. Springer, 2006, pp.561-566. Sobolev S.L, Vaskevich V.L, The Theory of Cubature Formulas. Kluwer Academic Publishers Group, Dordrecht (1997). Vasilenko V.A, Spline-fucntions: Theory, Algorithms, Programs, Nauka, Novosibirsk, 1983, 216 p. (in Russian) K.M. Shadimetov, A.R. Hayotov, Journal of Computational and Applied Mathematics 235 (5), 1114-1128 “Optimal quadrature formulas with positive coefficients in space” K.M. Shadimetov, A.R. Hayotov Calcolo 51 (2), 211-243 “Optimal quadrature formulas in the sense of Sard in space” K.M.Shadimetov, A.R.Hayotov, F.A.Nuraliev, Journal of Computational and Applied Mathematics 243, 91-112 “On an optimal quadrature formula in Sobolev space ” S.S.Babaev “ Optimal approximation of differentiable and square-integrable functions” Download 60.55 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling