Hisoblash usullari


Download 327.61 Kb.
bet2/7
Sana03.06.2024
Hajmi327.61 Kb.
#1841523
1   2   3   4   5   6   7
Bog'liq
Oddiy differensial tenglamalarni bir qadamli usullar Eyler, Runge

Kurs ishining maqsadi. Ushbu muammo bo'yicha turli xil qarashlar va g'oyalarni o'rganish, biz o'rganayotgan tushunchani talqin qilishdagi umumiy xususiyatlar va farqlarni aniqlash, oddiy differensial tenglamalarni bir qadamli taqribiy hisoblash tizimini va ushbu tizimning samarali ishlashi uchun qanday zamonaviy formulalar va terminlar ishlanmalari mavjudligini ko'rib chiqish.
Kurs ishining vazifalari. Kurs ishimizning maqsadidan kelib chiqib, quyidagi vazifalar qo’yilgan.
1. Hisoblash usllarida formulalarni samaradorligini baholashga doir asosiy jarayonlar mohiyati, turlari va ahamiyatini yoritib berish.
2. Hisoblash usllarida buyruqlar ketma-ketligi tahlili va uning normativlarini aniqlash va bayon etish.
3. Jarayonda ishtirok etuvchining tashkiliy-huquqiy qoidasi bo’lmish imkoniyatlari yo’riqnomasini tuzishning umumiy talablarining ustuvor tomonlarini yoritib berish va tahlil qilish.
Kurs ishi uslubiyati va uslublari. Kurs ishi mavzusi boyicha O’zbekiston Respublikasi prezidenti Sh.M.Mirziyoyev tomonidan ishlab chiqilgan O’zbekistonning 2017-2021yillarda O‘zbekiston Respublikasini rivojlantirishning beshta ustuvor yo‘nalishlari bo‘yicha HARAKATLAR STRATEGIYASI , xususan raqamli tizimlar va ularni formallashtirishning ustuvor yo‘nalishari, O’zbekiston Respublikasi Oliy Majlisi tomonidan qabul qilingan qarorlar, ushbu mavzu bo’yicha yetakchi olimlarning ilmiy tadqiqot natijalari, xorijda va mamlakatimizda to’plangan ilmiy, amaliy tajriba va xulosalardan unumli foydalanilgan. Ilmiy ishda mantiqiy sxemalash, statistik guruxlash, dinamik qatorlash, jadvallarni analitik taqqoslash kabi uslublardan foydalanildi.
Kurs ishi tuzilishi va tarkibi. Kurs ishi “Funksiyani sonli integrallash” mavzusida yozilgan bo’lib kirish, asosiy qism 2 bob, 1 - bob undagi 3 paragraf, 2 - bob 2 paragrafdan, xulosa va takliflar, foydalanilgan adabiyotlar ro’yxatidan iborat.


  1. BOB. Oddiy differensial tenglamalar


Differensial tenglamalarni yuqori bo’limlardagidek aniq yechimini topish juda kamdan kam hollardagina mumkin bo’ladi. Amaliyotda uchraydigan ko’plab masalalarga aniq yechish usullarini qo’lashning iloji bo’lmaydi. Shuning uchun bunday differensial tenglamalarni taqribiy yoki sonli usular yordamida yechishga to’g’ri keladi.
Taqribiy usullar deb shunday usullarga aytiladiki, bu hollarda yechimlar biror funktsiyalar (masalan, elementar funktsiyalar) ketma-ketligining limiti ko’rinishida olinadi.
Sonli usullar - noma’lum funktsiyaning chekli nuqtalar to’plamidagi taqribiy qiymatlarini xisoblash usullaridir. Bu xollarda yechimlar sonli jadvallar ko’rinishida ifadalanadi.
Hisoblash matematikasida yuqorida keltirilgan bu guruhlarga tegishli bo’lgan ko’plab usullar ishlab chiqilgan. Bu usullarning bir-birlariga nisbatan o’z kamchiliklari va ustunliklari mavjud. Muhandislik masalalarini yechishda shularni hisobga olgan holda u yoki bu usulni tanlab olish lozim bo’ladi.
I.1. Ketma-ket yaqinlashish usuli. (Pikar algoritmi)
Pikar usuli birinchi guruhga tegishli taqribiy usullardan bo’lib amaliy masalalarni yechishda qo’llash mumkin.
Bizga,
y=f(x,y) (7.1.1)
birinchi tartibli differensial tenglamaning u(x0)=u0 - boshlang’ich shartni qanoatlantiruvchi yechimini topish masalasi qo’yilsin. Differensial tenglamaning o’ng tomoni f(x,y) funktsiya {|x-x0| a; |y-y0| b} to’rtburchakda uzluksiz va «u» bo’yicha uzluksiz xususiy hosilaga ega bo’lsin.
(7.1.1) dan
dy=f(x,u)dx
ifodani ikkala tomonini «x0» dan «x» gacha integrallasak
(7.1.2)
Bundan, boshlang’ich shartni hisobga olgan holda
(7.1.3)
Noma’lum funktsiya integral ifodasi ostida qatnashganligi uchun hosil bo’lgan (7.1.3) tenglamani integral tenglama deb ataladi.
(7.1.3) da f(x,y) funktsiyadagi “u”ning o’rniga uning ma’lum qiymati “u0”ni qo’yib birinchi yaqinlashish bo’yicha yechim u1(x) ni topamiz:
(7.1.4)
Endi (7.1.3) dagi f(x,y) funktsiyaning “u” o’rniga uni ma’lum qiymati “u1” ni qo’ysak ikkinchi yaqinlashish bo’yicha yechim “u2(x)” ni hosil qilamiz:
(7.1.5)
Ushbu jarayonni davom ettirsak

(7.1.6)
Shunday qilib quyidagi funktsiyalar ketma-ketligini hosil qildik
u1(x), u2(x), u3(x), ..., un(x), (7.1.7)
Bu ketma-ketlik yaqinlashuvchi yoki uzoqlashuvchi bo’lishi mumkin.
Quyidagi teoremani isbotsiz keltiramiz:
Teorema. Agar (x0;u0) nuqta atrofida f(x,y) funktsiya uzluksiz va
chegaralangan xususiy hosilasi fy (x,y) mavjud bo’lsa, u
holda Pikar {yi (x)} ketma-ketligi (7.1.1) tenglamaning
yechimi bo’lgan va u(x0)= u0 shartni qanoatlantiruvchi u(x)
funktsiyaga yaqinlashadi.
Demak, differensial tenglamalarni yechishda ushbu teoremani shartlari bajarilsa (ya’ni (7.1.7) yaqinlashuvchi bo’lsa) Pikar usulini qo’llash mumkin. Agar (7.1.7) ketma-ketlik uzoqlashuvchi bo’lsa, bu usulni qo’llash mumkin bo’lmaydi.
Misol. Ketma-ket yaqinlashish usuli bilan tenglamaning x0=0 da u0=1 shartni qanoatlantiruvchi xususiy yechimi topilsin.
Yechish. Tenglamani ikkala tomonini «x0» dan «x» gacha integrallasak

u”ning o’rniga uning ma’lum qiymati “u0”ni qo’yib birinchi yaqinlashish bo’yicha yechim u1(x) ni topamiz:



(7.1.5) ga asosan

Xuddi shuningdek u3 va u4 ni ham hisoblasak


Berilgan misoldagi tenglama chiziqli birinchi tartibli differensial tenglama bo’lganligi sababli aniq yechimini topishimiz imkoni bor:

Bundan ko’rinadiki taqribiy yechimlar u3 va u4 aniq yechimdan faqat oxirgi hadlari bilan farq qiladilar. Yuqoridagi teorema shartlari bajarganligi sababli bu misol uchun Pikar algoritmi yaqinlashuvchi bo’ladi.



Download 327.61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling