I. Adabiyotlar taxlili I jahon neft zaxiralari va ularning manbalari
Aromatik, oddiy va qoʻsh bogʻlanishlarning ayrim tavsiflari
Download 355.71 Kb.
|
mirzaxon
- Bu sahifa navigatsiya:
- Bogʻlanish uzunligi, nm Bogʻlanish energiyasi, kJ/mol
- Benzol Metilbenzol Etilbenzol
- Aromatik birikmalar
Aromatik, oddiy va qoʻsh bogʻlanishlarning ayrim tavsiflari
Aromatik uglevodorodlar sistematik nomenklatura boʻyicha arenlar deb ataladi. Benzol molekulasining vodorod atomlari radikallarga almashinganda benzolning gomologlar hosil boʻladi.
Benzolning gomologlarini nomlash uchun shakllangan trivial nomlashlar ham ishlatiladi: metilbenzol — toluol,dimetilbenzol — ksilol, izopropilbenzol — kumol, vinilbenzol — stirol deb ataladi. Molekulasida bir necha radikallar boʻlgan birikmalarni nomlash uchun benzol halqasidagi uglerod atomlari raqamlanib, birikma nomlanganda oʻrinbosar (radikal)ning oʻrni sonlar orqali koʻrsatiladi. Agar benzol molekulasining ikkita vodorod atom radikallarga almashingan boʻlsa, u holda benzolning orto-, meta-, para- hosilalari paydo boʻladi. Ular qisqacha birinchi harfi bilan belgilanadi: orto — o, meta — m, para — p. Shuningdek, harflar oʻrniga sonlar orqali belgilash ham qabul qilingan. Arenlar asosan toshkoʻmir smolasi va neftni fraktsiyalash yoʻli orqali haydab olinadi. Shu bilan birga toshkoʻmirni kokslaganda va neftni haydashda hosil boʻladigan gazlarni sintezlash orqali ham olinadi. Alkanlarni katalizator ishtirokida aromatlab degidrogenlashda (riforning) benzol va uning hosilalari hosil boʻladi. C6H12 → C6H6 + 3H2↑ Arenlarni tsiklogeksan va uning gomologlarini degidrogenlab olish mumkin. N.D.Zelinskiy neftning tarkibidagi tsiklogeksanni Pt, Pd katalizatorlari ishtirokida 300 °C haroratda degidrogenlab benzol oldi. Ushbu keltirilgan tsikogeksan hosilalari degidrogenlanganda, benzolning hosilalari hosil boʻladi: C6H11 — CH3 → C6H5 + 3H2↑ Faollashtirilgan koʻmir toʻldirilib, qizdrilgan nay orqali atsetilen oʻtkazish bilan benzol oʻzlashtirish mumkin: Yoki reaksiya tenlamasini molekula koʻrinishida yozsak: {\displaystyle {\ce {3C2H2 -> C6H6}}}
Aromatik birikmalar (yun. aroma – xushbo‘y, muattar) – moleku-lasi bir yoki bir necha benzol yadrolaridan tashkil topgan organik birikmalar va ularning hosilalari. Eng oddiy vakillari – benzol (S6N6) va uning hosilalaridir. Benzol yadrosidagi qo‘shbog‘larning oddiy bog‘lar orqali bog‘lanishidan hosil bo‘lgan benzol halqalari tizimi tufayli Aromatik birikmalar aromatik xususiyat kasb etgan va shuning uchun ular alifatik birikmalar hamda alitsiklik birikmalardan katta farq qiladi. Aromatik birikmalar elektrofil va nukleofil almashinish reaksiyalari (galogenlash, nitrolash, sulfolash, alkillash, arillash va boshqalar)ga oson kirishadi. Mac, nitrat kislota ta’sirida benzol nitrobenzolga aylanadi. Bir paytlar Aromatik birikmalar deyilganda faqat muat-tar tabiiy birikmalar (o‘simliklardan olinadigan efir moylari, balzamlar, smolalar va boshqalar) tushunilardi. Bu birik-malarga "aromatik", ya’ni xushbo‘y degan nom ham o‘sha vaqtda berilgan. Hozir esa Aromatik birikmalar so‘zi o‘z ma’nosini yo‘qotgan, chunki xushbo‘y birikmalar har xil sinfga ki-ruvchi organik birikmalar orasida ham mavjud. Ko‘pchilik Aromatik birikmalar qo‘lansa yoki de-yarli hidi yo‘q. 19-asr o‘rtalaridan Aromatik birikmalar kimyosi juda tez rivojlana borib, ular texnika va laboratoriya ishlarida qo‘llana bosh-ladi. Aromatik birikmalar barqaror moddalardir. Ularni boshqa sinf birikmalaridan qat’iy sharoitlardagina hosil qilish mumkin. Mas, benzolni 650°da atsetilendan faol ko‘mir ishtirokida yoki siklogeksanni degidridlab olish mumkin. Aromatik birikmalar alifa-tik birikmalarni degidrotsikllash, po-limerlash yoki kondensatlash yo‘li bilan olinadi. Bu reaksiyalar aromatlash reak-siyasi deyilib, ular o‘simlik, hayvon or-ganizmlari va mikroorganizmlarda ham ro‘y beradi. Benzin ham sanoatda aromat-lash reaksiyasidan o‘tkaziladi, natijada benzinning xususiyatlari yaxshilanadi. Toshko‘mirni kokslab yoki neftni termik va katalitik krekingga uchratib ham Aromatik birikmalar hosil qilish mumkin.Neftni qayta ishlash sanoatida polimerlash jarayoni asosan oktan soni ≈80 teng bo’lgan di-, tri – va tetrapropenlarni qayta ishlab polimer benzin olish uchun qo’llaniladi. Undan tashqari propen va buten saqlagan aralash xom ashyodan di-, tributenlar va polimer benzin olish mumkin. Jarayondagi katalizatorlar fosfor kislotasi asosida tayyorlanadi. Jarayonning termodinamikasi va mexanizmi Quyidagi jadvalda polimerlanish reakstiyasidagi propen va butenlarning ayrim xarakteristikalari keltirilgan Polimerlangan alkenning polimerlash issiqlik effekti 1 71 8 моль ni tashkil Kj etadi. Standart sharoitda 500-550K haroratda polimerlanish erkin gibss energiyasining kamayishi bilan boradi. Normal tuzilishga ega bo’lgan 1- alkenlarnikiga nisbatan, kerakli izoalkenlarning hosil bo’lishida Gibss energiyasi 1 2 19 моль dan past va tarmoqlangan alkenlar hosil bo’lishi bilan boradigan Kj polimerlanishda standart Gibss energiyasining pasayishi ko’proq bo’ladi. Bosimning ortishi bilan polimerlanish tengligi darajasi ortadi. С Н reakstiyasi bo’yicha polenning o’zgarish darajasini bosimga13 6 6 12 2С Н bog’liqligi. Polimerlanish karboniy kationli mexanizm bo’yicha borib, bunda alkenlar gaz fazasida bo’lib reakstiya katalizator yuzasida boradi. Shuning uchun karbokationlar faqat qarama – qarshi ionlar donalarida adsorbstiyalangan ko’rinishda bo’lishi mumkin. Boshqacha aytganda buni ionli juftlikday ko’rish mumkin, bu erda anion katalizator fazasiga kiradi. Suyuq katalizator qo’llanilganda reakstiya katalizator plenkasida boradi va ionli juftliklarning bir qismi kinetik mustaqil ionlarga dissostiyalanishi mumkin. Polimerlanishning mexanizmini quyidagi sxema ko’rinishida yozish mumkin: 1). Alkenning protoklanishi: Alken molekulasiga π-bog’ bo’yicha karbokationlarning birlashishi: larning bog’lari mustahkamligi bir xil deb hisoblasak, bu С6Н13 А va С3Н7 reakstiyani issiqlik effekti nolga yaqin. Kichik ion anion bilan kuchli reakstiyaga kirishadi va reakstiya endotermik bo’ladi. 3). Katalizatorga protanning berilishi: Bu reakstiya natijasida alkenlar hosil bo’ladi: Agar ikkala geksan ham (I) iondan hosil bo’lsa edi, 4-metil 2-pentenning chiqishi, 4-gistil 1-pentenning chiqishidan yuqori bo’lishi kerak edi, chunki birinchi holatda reakstiyaning issiqlik effekti 168 mol ga yuqori. 4-metil 2-pentenga Kj nisbatan 4-metil 1-pentenning chiqishi 4 marta ortiq. Ehtimol bu 4-metil 1- pentenning quyidagi sxema bo’yicha hosil bo’lishi bilan bog’liqIkkilamchi ionning birlamchi ionga izomerlanishi 1 80 mol issiqlikni Kj sarflanishi bilan bog’liq. Lekin ikkinchi bosqich 1 65 mol yuqori issiqlikKj effektida boradi.) Shuning uchun agar polimerlash protonning berilishidan tez borsa, reakstiyaning bir qismi yana ham tezroq bo’lishi kerak. 4) Proton alken molekulasiga qaytariladi: yoki Protonning karbonstionli propenga qaytarilishi natijasida 4-metil 1-pentenning hosil bo’lish reakstiyalari issiqliklari nisbati bir xil. 3 va 4 reakstiyalar natijasida bir xil mahsulot hosil bo’ladi shuning uchun ularni qaysi biri borayotganini aytish qiyin. 4 reakstiya ekzotermik, 3 reakstiyaning tengligi o’ngga qarab ortadi shuning uchun katalizatorning kislotaliligi uncha katta emas. 3 reakstiya katta tezlikda boradi chunki bu reakstiya monomolekulyar, 4 reakstiya esa ikkinchi darajali, farqi shundaki aktivlanish energiyasi u yuqori bo’lmasligi kerak. Geksil ionning katalizatordan geksen holida ajratilishigacha ion (F) izomerlanishi mumkin. (II)- (V) karbokationlarni katalizatorga protonlarni berilishida 2-metil 2-penten, 2- metil 3-penten, 3-metil 2-penten, 2-metil 1-penten, 2,3-di metil 1-buten va 2,3 dimetil 2-buten hosil bo’ladi. C6 ionlari ham keyin C3 ionlari singari propen bilan ta’sirlashadi va natijada ionil karbokationlari hosil bo’lib ularning stabillashi natijasida nonenlar aralashmasi hosil bo’ladi. C6 ionlari reakstiyalaridan tashqari C9 ionlarining ham buzilishi bo’lishi mumkin, bu reakstiya oldingi reakstiyadan endotermik С5Н10,С4Н9 hisoblanadi. Energetik jihatdan C9 ionlarining С5 Н8va С5 Н11 С12Н25 ionininghosil bo’lishi qulaydir. Polimerizastiyaning keyingi bosqichlarida buzilishi natijasida iptenlar va oktenlar hosil bo’lishiga olib keladi, natijada molekulada uglerod atomlari soni 3 dan ko’p bo’lgan polimerlar hosil bo’ladi. Polimerlarning hosil bo’lishi quyidagi ikkilamchi reanlarda boradi: 6) Gidrid – ionni ajratish: C)A reakstiyalar natijasida alkenil ionlari va alkanlar hosil bo’ladi. Alkenil ionlarining keyingi o’zgarishlari katalizator yuzasiga mustahkam bog’langan yuqori to’yinmagan mahsulotlar hosil bo’lishiga olib keladi. Bu o’zgarishlar quyidagi sxemadagi borishi mumkin. mahsulotlar. Quyidagi tipdagi reakstiyalar natijasida kam miqdorda stikloalkanlar va stikloalkenlarni hosil bo’lishi ham kuzatiladi.
C3-C4 alkenlarni polimerlash natijasida benzinning qaynash temperaturasi chegarasidagi izoalkenlar aralashmasi olishda kationli polimerlashning har xil katalizatorlari ishlatiladi.asosan amalda ikki xil farfor kislotasi asosidagi katalizatorlar qo’llaniladi. Suvda P2O5 ning erishi natijasida gamma fosfor kislotalar hosil bo’ladi. Eritma tarkibida 72,4% P2O5 ning bo’lishida H3PO4 ortofosfat kislotasi hosil bo’ladi. Uning zichligi 1870 kg/m3 suyuqlanish harorati 42,30C, qaynash harorati 255,30C ga teng. Eritma tarkibida P2O5 ning ortishi bilan (qator) molekulasida 105 gacha fosfor bo’lgan qator polifosforli kislotaar hosil bo’ladi. Tarkibida 79,7% P2O5 saqlagan eritma H4P2O7 tarkibga ega bo’lib, pirofosfor kislotasi deyildi. Bu tarkibli P2O5 ni kislotada 14% ortofosfat, 38% pirofosfor 23% tri-,13% tetro-, 7% penta-, 2% geksa-,1% gepta- va oktafosfat kislota izlari aralashmasidan iborat bo’ladi.. Polimerizastiya xemosorbstiyalangan H3PO4 katalizatori sifatida fosfor kislotasining aktivligi uning konstentrastiyasi ortishi bilan ortadi. H3PO4 ning miqdori 100 dan 110% gacha oshganda kislotalilik 10 marta ortsa, reakstiyaning tezligi 3 marta ortadi. Kislota konstentrastiyasining keyingi ortishi katalizatorni aktivligini pasayishiga va natijada katalizatorda smolasimon mahsulotlar to’planishiga olib keladi. H3PO4 ning jarayon uchun optimal miqdori 108-110%ni tashkil etadi. Reakstiya haroratida kislota ustidagi suvning to’yingan bug’ bosimi kislota konstentrastiyasida ortiqroq. Agar xom ashyoda suv bug’i bo’lmasa, kislota degidratlanadi va uning konstentrastiyasi ortadi. Agar xom ashyoda suv bug’i miqdori ortiq bo’lsa, unda kislota konstentrastiyasi va uning aktivligi pasayadi. Shuning uchun kislota konstentrastiyasini kerakli maromda ushlab turish uchun xom – ashyodagi namlikni boshqarib turish kerak. Polimerizastiya katalizatori sifatida ikki xil ko’rinishdagim fosfor kislotasi foydalaniladi. Qattiq fosfor kislotasi – kizelgur poroshogiga (infuzornaya zemlya, kremniy oksidi amorf) ortofosfat kislotasi shimdirilib, tabletka holiga keltirilib 300-400 0C da toblanib tayyorlanadi. Fosfor kislotasi kizelgur poroshokini bog’laydi va tabletka kerakligicha mustahkam hisoblanadi, lekin u namlanganda kislota qovushqoqligi pasayib uning mexanik mustahkamligi pasayib ketadi. Download 355.71 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling