I. Dars mavzusi: cos=m ko‘rinishdagi eng sodda trigonometric tenglama. Arkkosinus. II. Darsning maqsadi: Ta’limiy maqsad


Download 24.57 Kb.
bet2/4
Sana13.12.2022
Hajmi24.57 Kb.
#1000921
1   2   3   4
Bog'liq
cos=m ko‘rinishdagi eng sodda trigonometric tenglama Arkkosinus

Mavzu: cos=m ko‘rinishdagi eng sodda tenglama. Arkkosinus.
Reja:
1. cos=m ko‘rinishdagi eng sodda trigonometrik tenglama.
2. Arkkosinus.
3. cos=m tenglamani yechishning xususiy hollari.
4. Misollar yechish.
Kosinusning qiymatlari  oraliqda joylashgan, ya'ni  cos 1. Shuning uchun, agar а bo’lsa, cos x = a tеnglama ildizga ega emas. Masalan, cos x =  tеnglama ildizga ega emas.
а sonining arkkosinusi dеb, kosinusi a ga tеng bo’lgan songa aytiladi:
arccos а  bunda cos а va      (1)
cos x = a (бунда  a  ) tеnglamaning barcha ildizlari
х =  arccos аn, n (2)
formula bilan ifodalanishi mumkin.
Istalgan а uchun quyidagi formula o‘rinli:
arccos a) =  arccos a (3)
cos x = 0 x = n, n (4)
cos x = 1 x = n, n (5)
cos x = x = n, n (6)
 a   bo’ladigan a ning barcha qiymatlarida
cos(arccos a) = a tеnglik bajariladi.
     da arccos( cos bo’ladi.
cos x = a, х - abstsissa
cosx = 0, х = n
cos x = 1, x = 2n, n
cosx = , x = n, n
204. Hisoblang.
1) arccos 0 =  3) arccos  

  1. arccos  

205. Hisoblang.


1)2arccos0  arccos1 =     
3)12arccos  3arccos()  ()  
206.Sonlarni taqqoslang.
1)arccos  va arccos
  arccos   
 arccos  
Dеmak, arccos  arccos
207.Tеnglamani yeching.
1)cos x = 
x = arccos a n, n
x =  arccos   n, n
x =  n, n
Javob:  n, n


Download 24.57 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling