Immunity Review Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation Ari B. Molofsky, 3, 4


Download 452.67 Kb.
Pdf ko'rish
bet3/3
Sana19.09.2017
Hajmi452.67 Kb.
#16057
1   2   3

nals that directly repress tissue ILC2s and Tregs during chronic

inflammation (

Kearley et al., 2015

).

IL-33 has diverse effects in cancer models. Direct overexpres-



sion of IL-33 in neoplasms promoted NK and CD8

+

T cell infiltra-



tion and restriction of cancer growth and metastasis (

Gao et al.,

2015

). However, IL-33 can signal on cancer cells that themselves



express ST2L, thereby promoting survival and metastasis (

Kim


et al., 2014; Levescot et al., 2014; Yu et al., 2015

). In a model

of breast cancer, exogenous IL-33 drove a mixed regulatory/

type 2 immune infiltrate that promoted tumor growth and metas-

tasis (

Jovanovic et al., 2014



). Elevated levels of blood ILC2s were

identified in patients with gastric cancer and were associated

with a suppressive immune state (

Bie et al., 2014

). Together,

the effects of IL-33 on cancer appear context-specific and might

depend on the types of immune cells in the tumor environment,

the amount of available IL-33, the amount of sST2 and the tumor

cell-intrinsic expression of ST2L.

Integrating the Spectrum of IL-33 Activities

Understanding of IL-33 biology has evolved and expanded from

its predominant role in allergic pathology to unexpected participa-

tion in basic physiologic processes connected with development

and metabolism, to tissue repair and fibrosis, and to roles in

classic inflammation. A framework for conceptualizing the spec-

trum of IL-33 biology hypothesizes a stepwise process by which

the size of the tissue IL-33 nuclear pool, the presence of support-

ing cytokines, and the types of responding cells create a dynamic

element embedded within the functionality of tissues (

Figure 3


).

Stage 1: Homeostasis

The role of IL-33 during tissue homeostasis is most informed

from studies in adipose tissue, but similar mechanisms might

occur in female reproductive organs and elsewhere (

Figure 2


A).

At rest, IL-33 is maintained as a reservoir in the nuclei of certain

endothelial and epithelial cells, and perhaps certain fibroblast

reticular stromal cells. In response to poorly defined cues, which

might be mechanical, hormonal, or metabolic, active IL-33 is

translocated to the extracellular space, perhaps through regu-

lated secretion or cellular turnover associated with focal areas

of cell death. The primary targets of constitutive IL-33 production

are likely ILC2s and subsets of Tregs, which are positioned during

development and whose activation leads to accumulation of

AAMs and eosinophils to create a tissue environment that sup-

presses inflammation and promotes a reparative state character-

ized by tolerance. At these homeostatic concentrations, effects

of IL-33 are restricted to local tissue by the constitutive presence

of the decoy receptor, sST2, in serum. Similar pathways might be

elicited during localized tissue injury (

Brunner et al., 2011; Duan

et al., 2012; Liang et al., 2013; Schiering et al., 2014; Turnquist

et al., 2011; Yin et al., 2013

), where the target of these and related

activities might include resident precursor-like stromal cells (

Bur-


zyn et al., 2013; Goh et al., 2013; Heredia et al., 2013; Lee et al.,

2015


). While speculative at this time, the ability of IL-33, ILC2,

and Treg cells to regulate the tissue regenerative compartment

remains an important area for further study.

Stage 2: Amplification

Migratory helminths, which are highly adapted to their hosts,

elicit the second stage of IL-33 biology characterized by in-

creased numbers and amounts of IL-33 in involved tissues

(

Figure 2



B). This is accompanied by expansion of ST2

+

immune



cells, particularly ILC2s and Th2 cells, which help to restrict

the helminth, but also Treg cells, which repress the pro-inflam-

matory effects of chronic infestation and together promote the

healing of involved tissue. sST2 levels might increase to contain

effects of the expanded IL-33 pool, which can be buffered over

many years before pathologic effects of fibrosis and other tissue

injuries become apparent. Over time, niches for key precursor

cells might become disturbed, such that tissue architecture

can no longer be sustained. Tissue tolerance and metabolic al-

terations necessary to sustain the massive egg-laying capacity

of long-lived helminths might represent adaptations that have

co-evolved with these parasites, which are widespread among

vertebrates (

Finlay et al., 2014; Maizels et al., 2012; McSorley

and Maizels, 2012

). During allergic pathology, such as asthma

and atopic dermatitis, expansion of ILC2s becomes dissociated

from Treg stimulation, enabling the activation of adaptive

1012 Immunity 42, June 16, 2015

ª2015 Elsevier Inc.

Immunity

Review


immunity and associated accumulation of Th2 cells and the

development of high-affinity IgE capable of activating mast cells

and basophils. Why Treg cells are poorly induced in allergy to

environmental allergens remains perplexing but might reflect

developmental anomalies related to changes in the early post-

natal environment in westernized countries, the so-called ‘‘hy-

giene’’ hypothesis. As such, further research investigating the

early postnatal development, tissue positioning and differentia-

tion of ILC2s and Treg cells might be particularly informative.

Indeed, perinatal Treg cells might have specialized properties

that endow them with functionalities related to tissue-specific

tolerance (

Yang et al., 2015

).

Stage 3: Conversion



Inflammatory and infectious conditions associated with loss of

epithelial integrity, microbial invasion at damaged barriers, and

damage to precursor populations define the third stage of IL-33

(

Figure 2



C). Inflammatory cells such as NK cells, Th1 CD4

+

Figure 3. Spectrum of IL-33 Biology



A model of the spectrum of IL-33 effects on tissue

during beneficial and pathologic immune re-

sponses, with IL-33 cellular pools increasing from

left to right. (Homeostasis, Blue) IL-33 is present

in a restricted subset of cells and cooperates

with unknown signals to maintain tissue integrity,

limit excess inflammation, and promote tissue

adaptation to remodeling and other physiologic

stressors. (Amplification, Purple) During acute

tissue injury and damage, IL-33 synergizes with

other epithelial cytokines and lymphokines to

promote tissue homeostasis and repair (stroke,

myocardial infarction, wounding). Helminths elicit

similar responses. With repetitive tissue damage,

IL-33 pools increase, regulatory mechanisms

are suppressed, inflammation is amplified, and

fibrosis ensues (sclerosis, cirrhosis, allergic dis-

ease). (Conversion, Red) Generation of IL-12 and

other inflammatory signals promotes IL-33 sig-

naling on inflammatory cells that are normally un-

responsive, while repressing type 2-associated

responses. Activation of this pathway promotes

beneficial responses to infection and possibly

vaccination, and might support anti-cancer im-

mune responses in certain settings. With chronic

unresolved inflammation, however, tissue IL-33

increases and ultimately contributes to tissue

damage (COPD, autoimmune diseases).

T cells, and CD8

+

T cells acquire ST2



and thus IL-33 sensitivity in response

to IL-12 and other inflammatory media-

tors, such that classical immune inflam-

matory pathways become engaged, a

process we term ‘‘conversion’’ (

Villarreal

and Weiner, 2014

). Regulatory and type

2 responses are also actively repressed

by inflammatory signals such as IFN-g

(

Molofsky et al., 2015



). In certain tissues

(lymph nodes, spleen), a relative lack of

otherwise constitutively ST2

+

immune



cells might establish permissive condi-

tions for acquiring responsiveness to

IL-33, which is greatly expanded during

the amplification of the fibroblastic reticular cell network and

(in human) HEV in the enlarging lymph node. Here, IL-33 be-

comes critical in mediating host defense against damaged bar-

riers in the setting of bacterial or viral infection. In the chronic

phases of inflammation, nuclear pools of IL-33 become greatly

expanded in tissue, such that periodic challenges lead to

massive release of active IL-33 that overwhelms local sST2

levels and systemic effects of IL-33 begin to dominate.

Although such a dramatic shift from type 2-associated to

type 1-associated inflammation seems unusual, IL-18, another

member of the IL-1 family, can mediate similarly disparate re-

sponses (

Fabbi et al., 2015; Smith, 2011; Voehringer, 2012

).

Expression of novel IL-1 family receptors by cells constitutes



an economical mechanism to rapidly re-direct conserved

signaling networks to alternative effector programs in response

to life-threatening challenges.

Although much of this model remains conjectural, it provides a

framework for organizing the complexities of IL-33 biology while

Immunity 42, June 16, 2015

ª2015 Elsevier Inc. 1013

Immunity


Review

exposing areas in need of further investigation. Details of IL-33

production and access to the extracellular environment, of

sST2 production and regulation, and of factors determining the

expression of ST2 on distinct populations of ILC2s and Treg cells

remain unclear. The precise role of ST2 on myeloid cells is largely

undefined, and the mechanisms by which IL-12 and potentially

other signals enable the expansion of ST2 expression and

IL-33 responsiveness onto inflammatory cytotoxic cells remain

understudied. The next few years will be marked by further un-

derstanding of the remarkable spectrum of biologic processes

affected by IL-33 and its role in homeostasis, repair, host de-

fense, and immunopathology.

ACKNOWLEDGMENTS

We thank laboratory members for critical review of the manuscript. This work

was supported by AI026918, AI030663, HL107202, and K08DK101604

(A.B.M.) from the NIH, the UCSF Diabetes Family Fund (A.B.M.), the Sandler

Asthma Basic Research Center at UCSF, and the Howard Hughes Medical

Institute.

REFERENCES

Acton, S.E., Farrugia, A.J., Astarita, J.L., Moura˜o-Sa´, D., Jenkins, R.P., Nye, E.,

Hooper, S., van Blijswijk, J., Rogers, N.C., Snelgrove, K.J., et al. (2014). Den-

dritic cells control fibroblastic reticular network tension and lymph node

expansion. Nature 514, 498–502

.

Ali, S., Mohs, A., Thomas, M., Klare, J., Ross, R., Schmitz, M.L., and Martin,



M.U. (2011). The dual function cytokine IL-33 interacts with the transcription

factor NF-kB to dampen NF-kB-stimulated gene transcription. J. Immunol.



187, 1609–1616

.

Andrade, M.V., Iwaki, S., Ropert, C., Gazzinelli, R.T., Cunha-Melo, J.R., and



Beaven, M.A. (2011). Amplification of cytokine production through synergistic

activation of NFAT and AP-1 following stimulation of mast cells with antigen

and IL-33. Eur. J. Immunol. 41, 760–772

.

Aupperlee, M.D., Zhao, Y., Tan, Y.S., Leipprandt, J.R., Bennett, J., Haslam,



S.Z., and Schwartz, R.C. (2014). Epidermal growth factor receptor (EGFR)

signaling is a key mediator of hormone-induced leukocyte infiltration in the pu-

bertal female mammary gland. Endocrinology 155, 2301–2313

.

Baekkevold, E.S., Roussigne´, M., Yamanaka, T., Johansen, F.-E., Jahnsen,



F.L., Amalric, F., Brandtzaeg, P., Erard, M., Haraldsen, G., and Girard, J.-P.

(2003). Molecular characterization of NF-HEV, a nuclear factor preferentially

expressed in human high endothelial venules. Am. J. Pathol. 163, 69–79

.

Bartelt, A., and Heeren, J. (2014). Adipose tissue browning and metabolic



health. Nat. Rev. Endocrinol. 10, 24–36

.

Bartelt, A., Bruns, O.T., Reimer, R., Hohenberg, H., Ittrich, H., Peldschus, K.,



Kaul, M.G., Tromsdorf, U.I., Weller, H., Waurisch, C., et al. (2011). Brown ad-

ipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205

.

Bartemes, K.R., Iijima, K., Kobayashi, T., Kephart, G.M., McKenzie, A.N., and



Kita, H. (2012). IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells

mediate innate type 2 immunity and allergic inflammation in the lungs.

J. Immunol. 188, 1503–1513

.

Baumann, C., Bonilla, W.V., Fro¨hlich, A., Helmstetter, C., Peine, M., Hegazy,



A.N., Pinschewer, D.D., and Lo¨hning, M. (2015). T-bet- and STAT4-dependent

IL-33 receptor expression directly promotes antiviral Th1 cell responses. Proc.

Natl. Acad. Sci. USA 112, 4056–4061

.

Beamer, C.A., Girtsman, T.A., Seaver, B.P., Finsaas, K.J., Migliaccio, C.T.,



Perry, V.K., Rottman, J.B., Smith, D.E., and Holian, A. (2013). IL-33 mediates

multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via

the mobilization of innate helper cells in the lung. Nanotoxicology 7, 1070–

1081


.

Bergers, G., Reikerstorfer, A., Braselmann, S., Graninger, P., and Busslinger,

M. (1994). Alternative promoter usage of the Fos-responsive gene Fit-1 gener-

ates mRNA isoforms coding for either secreted or membrane-bound proteins

related to the IL-1 receptor. EMBO J. 13, 1176–1188

.

Besnard, A.-G., Guabiraba, R., Niedbala, W., Palomo, J., Reverchon, F., Shaw,



T.N., Couper, K.N., Ryffel, B., and Liew, F.Y. (2015). IL-33-mediated protection

against experimental cerebral malaria is linked to induction of type 2 innate

lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 11,

e1004607


.

Bessa, J., Meyer, C.A., de Vera Mudry, M.C., Schlicht, S., Smith, S.H., Iglesias,

A., and Cote-Sierra, J. (2014). Altered subcellular localization of IL-33 leads to

non-resolving lethal inflammation. J. Autoimmun. 55, 33–41

.

Bie, Q., Zhang, P., Su, Z., Zheng, D., Ying, X., Wu, Y., Yang, H., Chen, D.,



Wang, S., and Xu, H. (2014). Polarization of ILC2s in peripheral blood might

contribute to immunosuppressive microenvironment in patients with gastric

cancer. J Immunol Res 2014, 923135

.

Bonilla, W.V., Fro¨hlich, A., Senn, K., Kallert, S., Fernandez, M., Johnson, S.,



Kreutzfeldt, M., Hegazy, A.N., Schrick, C., Fallon, P.G., et al. (2012). The alar-

min interleukin-33 drives protective antiviral CD8

+

T cell responses. Science



335, 984–989

.

Bourgeois, E., Van, L.P., Samson, M., Diem, S., Barra, A., Roga, S., Gombert,



J.-M., Schneider, E., Dy, M., Gourdy, P., et al. (2009). The pro-Th2 cytokine

IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma

production. Eur. J. Immunol. 39, 1046–1055

.

Brestoff, J.R., and Artis, D. (2015). Immune regulation of metabolic homeosta-



sis in health and disease. Cell 161, 146–160

.

Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg,



G.F., Thome, J.J., Farber, D.L., Lutfy, K., Seale, P., et al. (2014). Group 2 innate

lymphoid cells promote beiging of white adipose tissue and limit obesity.

Nature 519, 1–17

.

Brunner, S.M., Schiechl, G., Falk, W., Schlitt, H.J., Geissler, E.K., and Fichtner-



Feigl, S. (2011). Interleukin-33 prolongs allograft survival during chronic

cardiac rejection. Transpl. Int. 24, 1027–1039

.

Bulek, K., Swaidani, S., Qin, J., Lu, Y., Gulen, M.F., Herjan, T., Min, B., Kaste-



lein, R.A., Aronica, M., Kosz-Vnenchak, M., and Li, X. (2009). The essential role

of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2

immune response. J. Immunol. 182, 2601–2609

.

Bulek, K., Swaidani, S., Aronica, M., and Li, X. (2010). Epithelium: the interplay



between innate and Th2 immunity. Immunol. Cell Biol. 88, 257–268

.

Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J.L., Cerletti, M., Jang, Y.,



Sefik, E., Tan, T.G., Wagers, A.J., Benoist, C., and Mathis, D. (2013). A special

population of regulatory T cells potentiates muscle repair. Cell 155, 1282–

1295

.

Byers, D.E., Alexander-Brett, J., Patel, A.C., Agapov, E., Dang-Vu, G., Jin, X.,



Wu, K., You, Y., Alevy, Y., Girard, J.-P., et al. (2013). Long-term IL-33-produc-

ing epithelial progenitor cells in chronic obstructive lung disease. J. Clin.

Invest. 123, 3967–3982

.

Carlock, C.I., Wu, J., Zhou, C., Tatum, K., Adams, H.P., Tan, F., and Lou, Y.



(2014). Unique temporal and spatial expression patterns of IL-33 in ovaries

during ovulation and estrous cycle are associated with ovarian tissue homeo-

stasis. J. Immunol. 193, 161–169

.

Carriere, V., Roussel, L., Ortega, N., Lacorre, D.-A., Americh, L., Aguilar, L.,



Bouche, G., and Girard, J.-P. (2007). IL-33, the IL-1-like cytokine ligand for

ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl.

Acad. Sci. USA 104, 282–287

.

Cayrol, C., and Girard, J.-P. (2009). The IL-1-like cytokine IL-33 is inactivated



after maturation by caspase-1. Proc. Natl. Acad. Sci. USA 106, 9021–9026

.

Cayrol, C., and Girard, J.-P. (2014). IL-33: an alarmin cytokine with crucial roles



in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31, 31–37

.

Cheng, L.E., and Locksley, R.M. (2015). Allergic inflammation–innately homeo-



static. Cold Spring Harb. Perspect. Biol. 7, 1–13

.

Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Annamalai, P., Ener-



ba¨ck, S., Lidell, M.E., Saraf, M.K., Labbe, S.M., Hurren, N.M., et al. (2014).

Brown adipose tissue improves whole-body glucose homeostasis and insulin

sensitivity in humans. Diabetes 63, 4089–4099

.

Chu, D.K., Llop-Guevara, A., Walker, T.D., Flader, K., Goncharova, S., Bou-



dreau, J.E., Moore, C.L., Seunghyun In, T., Waserman, S., Coyle, A.J., et al.

(2013). IL-33, but not thymic stromal lymphopoietin or IL-25, is central to

1014 Immunity 42, June 16, 2015

ª2015 Elsevier Inc.

Immunity

Review


mite and peanut allergic sensitization. J Allergy Clin Immunol 131, 187–

200.e1–8


.

Clarke, L.E., and Barres, B.A. (2013). Emerging roles of astrocytes in neural cir-

cuit development. Nat. Rev. Neurosci. 14, 311–321

.

Colbert, D.C., McGarry, M.P., O’neill, K., Lee, N.A., and Lee, J.J. (2005).



Decreased size and survival of weanling mice in litters of IL-5-/ -mice are a

consequence of the IL-5 deficiency in nursing dams. Contemp. Top. Lab.

Anim. Sci. 44, 53–55

.

Coyle, A.J., Lloyd, C., Tian, J., Nguyen, T., Erikkson, C., Wang, L., Ottoson, P.,



Persson, P., Delaney, T., Lehar, S., et al. (1999). Crucial role of the interleukin 1

receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal

immune responses. J. Exp. Med. 190, 895–902

.

Doherty, T.A., Khorram, N., Chang, J.E., Kim, H.-K., Rosenthal, P., Croft, M.,



and Broide, D.H. (2012). STAT6 regulates natural helper cell proliferation dur-

ing lung inflammation initiated by Alternaria. Am. J. Physiol. Lung Cell. Mol.

Physiol. 303, L577–L588

.

Duan, L., Chen, J., Zhang, H., Yang, H., Zhu, P., Xiong, A., Xia, Q., Zheng, F.,



Tan, Z., Gong, F., and Fang, M. (2012). Interleukin-33 ameliorates experimental

colitis through promoting Th2/Foxp3

+

regulatory T-cell responses in mice.



Mol. Med. 18, 753–761

.

Endo, Y., Hirahara, K., Iinuma, T., Shinoda, K., Tumes, D.J., Asou, H.K., Mat-



sugae, N., Obata-Ninomiya, K., Yamamoto, H., Motohashi, S., et al. (2015).

The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathoge-

nicity in the airway. Immunity 42, 294–308

.

Fabbi, M., Carbotti, G., and Ferrini, S. (2015). Context-dependent role of IL-18



in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97,

665–675


.

Fahy, J.V. (2015). Type 2 inflammation in asthma—present in most, absent in

many. Nat. Rev. Immunol. 15, 57–65

.

Finlay, C.M., Walsh, K.P., and Mills, K.H.G. (2014). Induction of regulatory cells



by helminth parasites: exploitation for the treatment of inflammatory diseases.

Immunol. Rev. 259, 206–230

.

Fock, V., Mairhofer, M., Otti, G.R., Hiden, U., Spittler, A., Zeisler, H., Fiala, C.,



Kno¨fler, M., and Pollheimer, J. (2013). Macrophage-derived IL-33 is a critical

factor for placental growth. J. Immunol. 191, 3734–3743

.

Frontini, A., and Cinti, S. (2010). Distribution and development of brown adipo-



cytes in the murine and human adipose organ. Cell Metab. 11, 253–256

.

Funakoshi-Tago, M., Tago, K., Sato, Y., Tominaga, S., and Kasahara, T. (2011).



JAK2 is an important signal transducer in IL-33-induced NF-kB activation. Cell.

Signal. 23, 363–370

.

Gao, X., Wang, X., Yang, Q., Zhao, X., Wen, W., Li, G., Lu, J., Qin, W., Qi, Y., Xie,



F., et al. (2015). Tumoral expression of IL-33 inhibits tumor growth and modifies

the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194,

438–445

.

Garlanda, C., Dinarello, C.A., and Mantovani, A. (2013a). The interleukin-1



family: back to the future. Immunity 39, 1003–1018

.

Garlanda, C., Riva, F., Bonavita, E., and Mantovani, A. (2013b). Negative reg-



ulatory receptors of the IL-1 family. Semin. Immunol. 25, 408–415

.

Gause, W.C., Wynn, T.A., and Allen, J.E. (2013). Type 2 immunity and wound



healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev.

Immunol. 13, 607–614

.

Gidlo¨f, O., Smith, J.G., Miyazu, K., Gilje, P., Spencer, A., Blomquist, S., and Er-



linge, D. (2013). Circulating cardio-enriched microRNAs are associated with

long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord.



13, 12

.

Gjorevski, N., and Nelson, C.M. (2011). Integrated morphodynamic signalling



of the mammary gland. Nat. Rev. Mol. Cell Biol. 12, 581–593

.

Goh, Y.P.S., Henderson, N.C., Heredia, J.E., Red Eagle, A., Odegaard, J.I.,



Lehwald, N., Nguyen, K.D., Sheppard, D., Mukundan, L., Locksley, R.M.,

and Chawla, A. (2013). Eosinophils secrete IL-4 to facilitate liver regeneration.

Proc. Natl. Acad. Sci. USA 110, 9914–9919

.

Gudbjartsson, D.F., Bjornsdottir, U.S., Halapi, E., Helgadottir, A., Sulem, P.,



Jonsdottir, G.M., Thorleifsson, G., Helgadottir, H., Steinthorsdottir, V., Ste-

fansson, H., et al. (2009). Sequence variants affecting eosinophil numbers

associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347

.

Guo, L., Wei, G., Zhu, J., Liao, W., Leonard, W.J., Zhao, K., and Paul, W. (2009).



IL-1 family members and STAT activators induce cytokine production by Th2,

Th17, and Th1 cells. Proc. Natl. Acad. Sci. USA 106, 13463–13468

.

Haenuki, Y., Matsushita, K., Futatsugi-Yumikura, S., Ishii, K.J., Kawagoe, T.,



Imoto, Y., Fujieda, S., Yasuda, M., Hisa, Y., Akira, S., et al. (2012). A critical

role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol 130,

184–194.e11

.

Halim, T.Y.F., Krauss, R.H., Sun, A.C., and Takei, F. (2012). Lung natural helper



cells are a critical source of Th2 cell-type cytokines in protease allergen-

induced airway inflammation. Immunity 36, 451–463

.

Halim, T.Y.F., Steer, C.A., Matha¨, L., Gold, M.J., Martinez-Gonzalez, I.,



McNagny, K.M., McKenzie, A.N.J., and Takei, F. (2014). Group 2 innate

lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated

allergic lung inflammation. Immunity 40, 425–435

.

Hams, E., Locksley, R.M., McKenzie, A.N.J., and Fallon, P.G. (2013). Cutting



edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate

obesity in mice. J. Immunol. 191, 5349–5353

.

Hardman, C.S., Panova, V., and McKenzie, A.N.J. (2013). IL-33 citrine reporter



mice reveal the temporal and spatial expression of IL-33 during allergic lung

inflammation. Eur. J. Immunol. 43, 488–498

.

Harms, M., and Seale, P. (2013). Brown and beige fat: development, function



and therapeutic potential. Nat. Med. 19, 1252–1263

.

Harris, H.E., Andersson, U., and Pisetsky, D.S. (2012). HMGB1: a multifunc-



tional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheu-

matol 8, 195–202

.

Hayakawa, H., Hayakawa, M., Kume, A., and Tominaga, S. (2007). Soluble ST2



blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem.

282, 26369–26380

.

Heredia, J.E., Mukundan, L., Chen, F.M., Mueller, A.A., Deo, R.C., Locksley,



R.M., Rando, T.A., and Chawla, A. (2013). Type 2 innate signals stimulate

fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153,

376–388

.

Ho, J.E., Chen, W.-Y., Chen, M.-H., Larson, M.G., McCabe, E.L., Cheng, S.,



Ghorbani, A., Coglianese, E., Emilsson, V., Johnson, A.D., et al.; CARDIoGRAM

Consortium; CHARGE Inflammation Working Group; CHARGE Heart Failure

Working Group (2013). Common genetic variation at the IL1RL1 locus regulates

IL-33/ST2 signaling. J. Clin. Invest. 123, 4208–4218

.

Hong, J., Bae, S., Jhun, H., Lee, S., Choi, J., Kang, T., Kwak, A., Hong, K., Kim,



E., Jo, S., and Kim, S. (2011). Identification of constitutively active interleukin

33 (IL-33) splice variant. J. Biol. Chem. 286, 20078–20086

.

Hoshino, K., Kashiwamura, S., Kuribayashi, K., Kodama, T., Tsujimura, T., Na-



kanishi, K., Matsuyama, T., Takeda, K., and Akira, S. (1999). The absence of

interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 devel-

opment and its effector function. J. Exp. Med. 190, 1541–1548

.

Hu, B., Song, J.T., Qu, H.Y., Bi, C.L., Huang, X.Z., Liu, X.X., and Zhang, M.



(2014). Mechanical stretch suppresses microRNA-145 expression by acti-

vating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-

converting enzyme to alter vascular smooth muscle cell phenotype. PLoS

ONE 9, e96338

.

Hudson, C.A., Christophi, G.P., Gruber, R.C., Wilmore, J.R., Lawrence, D.A.,



and Massa, P.T. (2008). Induction of IL-33 expression and activity in central

nervous system glia. J. Leukoc. Biol. 84, 631–643

.

Humphreys, N.E., Xu, D., Hepworth, M.R., Liew, F.Y., and Grencis, R.K. (2008).



IL-33, a potent inducer of adaptive immunity to intestinal nematodes.

J. Immunol. 180, 2443–2449

.

Hung, L.-Y., Lewkowich, I.P., Dawson, L.A., Downey, J., Yang, Y., Smith, D.E.,



and Herbert, D.R. (2013). IL-33 drives biphasic IL-13 production for noncanon-

ical Type 2 immunity against hookworms. Proc. Natl. Acad. Sci. USA 110,

282–287

.

Iijima, K., Kobayashi, T., Hara, K., Kephart, G.M., Ziegler, S.F., McKenzie, A.N.,



and Kita, H. (2014). IL-33 and thymic stromal lymphopoietin mediate immune

pathology in response to chronic airborne allergen exposure. J. Immunol. 193,

1549–1559

.

Immunity 42, June 16, 2015



ª2015 Elsevier Inc. 1015

Immunity


Review

Imai, Y., Yasuda, K., Sakaguchi, Y., Haneda, T., Mizutani, H., Yoshimoto, T.,

Nakanishi, K., and Yamanishi, K. (2013). Skin-specific expression of IL-33

activates group 2 innate lymphoid cells and elicits atopic dermatitis-like

inflammation in mice. Proc. Natl. Acad. Sci. USA 110, 13921–13926

.

Jin, Y., Yang, C.-J., Xu, X., Cao, J.-N., Feng, Q.-T., and Yang, J. (2015). MiR-



214 regulates the pathogenesis of patients with coronary artery disease by tar-

geting VEGF. Mol. Cell. Biochem. 402, 111–122

.

Jovanovic, I.P., Pejnovic, N.N., Radosavljevic, G.D., Pantic, J.M., Milovanovic,



M.Z., Arsenijevic, N.N., and Lukic, M.L. (2014). Interleukin-33/ST2 axis pro-

motes breast cancer growth and metastases by facilitating intratumoral accu-

mulation of immunosuppressive and innate lymphoid cells. Int. J. Cancer 134,

1669–1682

.

Kaczmarek, A., Vandenabeele, P., and Krysko, D.V. (2013). Necroptosis: the



release of damage-associated molecular patterns and its physiological rele-

vance. Immunity 38, 209–223

.

Kakkar, R., Hei, H., Dobner, S., and Lee, R.T. (2012). Interleukin 33 as a me-



chanically responsive cytokine secreted by living cells. J. Biol. Chem. 287,

6941–6948

.

Kato, A. (2015). Immunopathology of chronic rhinosinusitis. Allergol. Int. 64,



121–130

.

Kearley, J., Silver, J.S., Sanden, C., Liu, Z., Berlin, A.A., White, N., Mori, M.,



Pham, T.-H., Ward, C.K., Criner, G.J., et al. (2015). Cigarette smoke silences

innate lymphoid cell function and facilitates an exacerbated type I inter-

leukin-33-dependent response to infection. Immunity 42, 566–579

.

Khaled, W.T., Read, E.K.C., Nicholson, S.E., Baxter, F.O., Brennan, A.J.,



Came, P.J., Sprigg, N., McKenzie, A.N.J., and Watson, C.J. (2007). The IL-4/

IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell

development. Development 134, 2739–2750

.

Kim, B.S., and Artis, D. (2015). Group 2 innate lymphoid cells in health and dis-



ease. Cold Spring Harb. Perspect. Biol. 7, a016337

.

Kim, B.S., Siracusa, M.C., Saenz, S.A., Noti, M., Monticelli, L.A., Sonnenberg,



G.F., Hepworth, M.R., Van Voorhees, A.S., Comeau, M.R., and Artis, D. (2013).

TSLP elicits IL-33-independent innate lymphoid cell responses to promote

skin inflammation. Science Transl. Med. 5, 170ra16–170ra16

.

Kim, J.Y., Lim, S.-C., Kim, G., Yun, H.J., Ahn, S.-G., and Choi, H.S. (2014).



Interleukin-33/ST2 axis promotes epithelial cell transformation and breast

tumorigenesis via upregulation of COT activity. Oncogene. Published online

December 22, 2014.

http://dx.doi.org/10.1038/onc.2014.418

.

Kolodin, D., van Panhuys, N., Li, C., Magnuson, A.M., Cipolletta, D., Miller,



C.M., Wagers, A., Germain, R.N., Benoist, C., and Mathis, D. (2015). Antigen-

and cytokine-driven accumulation of regulatory T cells in visceral adipose tis-

sue of lean mice. Cell Metab. 21, 543–557

.

Kondo, Y., Yoshimoto, T., Yasuda, K., Futatsugi-Yumikura, S., Morimoto, M.,



Hayashi, N., Hoshino, T., Fujimoto, J., and Nakanishi, K. (2008). Administration

of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the

lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800

.

Kouzaki, H., Iijima, K., Kobayashi, T., O’Grady, S.M., and Kita, H. (2011). The



danger signal, extracellular ATP, is a sensor for an airborne allergen and trig-

gers IL-33 release and innate Th2-type responses. J. Immunol. 186, 4375–

4387

.

Ku¨chler, A.M., Pollheimer, J., Balogh, J., Sponheim, J., Manley, L., Sorensen,



D.R., De Angelis, P.M., Scott, H., and Haraldsen, G. (2008). Nuclear inter-

leukin-33 is generally expressed in resting endothelium but rapidly lost upon

angiogenic or proinflammatory activation. Am. J. Pathol. 173, 1229–1242

.

Kumar, S., Tzimas, M.N., Griswold, D.E., and Young, P.R. (1997). Expression



of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory

stimuli. Biochem. Biophys. Res. Commun. 235, 474–478

.

Kuroiwa, K., Li, H., Tago, K., Iwahana, H., Yanagisawa, K., Komatsu, N., Osh-



ikawa, K., Sugiyama, Y., Arai, T., and Tominaga, S.I. (2000). Construction of

ELISA system to quantify human ST2 protein in sera of patients. Hybridoma



19, 151–159

.

Kurowska-Stolarska, M., Kewin, P., Murphy, G., Russo, R.C., Stolarski, B.,



Garcia, C.C., Komai-Koma, M., Pitman, N., Li, Y., Niedbala, W., et al. (2008).

IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced

airway inflammation independent of IL-4. J. Immunol. 181, 4780–4790

.

Lanahan, A., Williams, J.B., Sanders, L.K., and Nathans, D. (1992). Growth fac-



tor-induced delayed early response genes. Mol. Cell. Biol. 12, 3919–3929

.

Layland, L.E., Mages, J., Loddenkemper, C., Hoerauf, A., Wagner, H., Lang,



R., and da Costa, C.U.P. (2010). Pronounced phenotype in activated regulato-

ry T cells during a chronic helminth infection. J. Immunol. 184, 713–724

.

Lee, M.-W., Odegaard, J.I., Mukundan, L., Qiu, Y., Molofsky, A.B., Nussbaum,



J.C., Yun, K., Locksley, R.M., and Chawla, A. (2015). Activated type 2 innate

lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87

.

Lefranc¸ais, E., and Cayrol, C. (2012). Mechanisms of IL-33 processing and



secretion: differences and similarities between IL-1 family members. Eur.

Cytokine Netw. 23, 120–127

.

Lefranc¸ais, E., Roga, S., Gautier, V., Gonzalez-de-Peredo, A., Monsarrat, B.,



Girard, J.-P., and Cayrol, C. (2012). IL-33 is processed into mature bioactive

forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA



109, 1673–1678

.

Lefranc¸ais, E., Duval, A., Mirey, E., Roga, S., Espinosa, E., Cayrol, C., and Gir-



ard, J.-P. (2014). Central domain of IL-33 is cleaved by mast cell proteases for

potent activation of group-2 innate lymphoid cells. Proc. Natl. Acad. Sci. USA



111, 15502–15507

.

Levescot, A., Flamant, S., Basbous, S., Jacomet, F., Fe´raud, O., Anne Bour-



geois, E., Bonnet, M.-L., Giraud, C., Roy, L., Barra, A., et al. (2014). BCR-

ABL-induced deregulation of the IL-33/ST2 pathway in CD34+ progenitors

from chronic myeloid leukemia patients. Cancer Res. 74, 2669–2676

.

Liang, Y., Jie, Z., Hou, L., Aguilar-Valenzuela, R., Vu, D., Soong, L., and Sun, J.



(2013). IL-33 induces nuocytes and modulates liver injury in viral hepatitis.

J. Immunol. 190, 5666–5675

.

Lingel, A., Weiss, T.M., Niebuhr, M., Pan, B., Appleton, B.A., Wiesmann, C.,



Bazan, J.F., and Fairbrother, W.J. (2009). Structure of IL-33 and its interaction

with the ST2 and IL-1RAcP receptors—insight into heterotrimeric IL-1

signaling complexes. Structure 17, 1398–1410

.

Liu, X., Hammel, M., He, Y., Tainer, J.A., Jeng, U.-S., Zhang, L., Wang, S., and



Wang, X. (2013). Structural insights into the interaction of IL-33 with its recep-

tors. Proc. Natl. Acad. Sci. USA 110, 14918–14923

.

Lo¨hning, M., Stroehmann, A., Coyle, A.J., Grogan, J.L., Lin, S., Gutierrez-Ra-



mos, J.C., Levinson, D., Radbruch, A., and Kamradt, T. (1998). T1/ST2 is

preferentially expressed on murine Th2 cells, independent of interleukin 4,

interleukin 5, and interleukin 10, and important for Th2 effector function.

Proc. Natl. Acad. Sci. USA 95, 6930–6935

.

Lunderius-Andersson, C., Enoksson, M., and Nilsson, G. (2012). Mast Cells



respond to cell injury through the recognition of IL-33. Front. Immunol. 3, 82

.

Luo, Y., Zhou, Y., Xiao, W., Liang, Z., Dai, J., Weng, X., and Wu, X. (2015). Inter-



leukin-33 ameliorates ischemic brain injury in experimental stroke through

promoting Th2 response and suppressing Th17 response. Brain Res. 1597,

86–94

.

Lu¨thi, A.U., Cullen, S.P., McNeela, E.A., Duriez, P.J., Afonina, I.S., Sheridan,



C., Brumatti, G., Taylor, R.C., Kersse, K., Vandenabeele, P., et al. (2009). Sup-

pression of interleukin-33 bioactivity through proteolysis by apoptotic cas-

pases. Immunity 31, 84–98

.

Maizels, R.M., Hewitson, J.P., and Smith, K.A. (2012). Susceptibility and im-



munity to helminth parasites. Curr. Opin. Immunol. 24, 459–466

.

Martinez-Gonzalez, I., Steer, C.A., and Takei, F. (2015). Lung ILC2s link innate



and adaptive responses in allergic inflammation. Trends Immunol. 36,

189–195


.

Marvie, P., Lisbonne, M., L’helgoualc’h, A., Rauch, M., Turlin, B., Preisser, L.,

Bourd-Boittin, K., The´ret, N., Gascan, H., Piquet-Pellorce, C., and Samson, M.

(2010). Interleukin-33 overexpression is associated with liver fibrosis in mice

and humans. J. Cell. Mol. Med. 14 (6B), 1726–1739

.

Mathis, D. (2013). Immunological goings-on in visceral adipose tissue. Cell



Metab. 17, 851–859

.

Matta, B.M., Lott, J.M., Mathews, L.R., Liu, Q., Rosborough, B.R., Blazar, B.R.,



and Turnquist, H.R. (2014). IL-33 is an unconventional Alarmin that stimulates

IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory

T cells. J. Immunol. 193, 4010–4020

.

1016 Immunity 42, June 16, 2015



ª2015 Elsevier Inc.

Immunity


Review

McHedlidze, T., Waldner, M., Zopf, S., Walker, J., Rankin, A.L., Schuchmann,

M., Voehringer, D., McKenzie, A.N.J., Neurath, M.F., Pflanz, S., and Wirtz, S.

(2013). Interleukin-33-dependent innate lymphoid cells mediate hepatic

fibrosis. Immunity 39, 357–371

.

McSorley, H.J., and Maizels, R.M. (2012). Helminth infections and host im-



mune regulation. Clin. Microbiol. Rev. 25, 585–608

.

McSorley, H.J., Blair, N.F., Smith, K.A., McKenzie, A.N.J., and Maizels, R.M.



(2014). Blockade of IL-33 release and suppression of type 2 innate lymphoid

cell responses by helminth secreted products in airway allergy. Mucosal Im-

munol. 7, 1068–1078

.

Miller, A.M., Xu, D., Asquith, D.L., Denby, L., Li, Y., Sattar, N., Baker, A.H.,



McInnes, I.B., and Liew, F.Y. (2008). IL-33 reduces the development of athero-

sclerosis. J. Exp. Med. 205, 339–346

.

Miller, A.M., Asquith, D.L., Hueber, A.J., Anderson, L.A., Holmes, W.M.,



McKenzie, A.N., Xu, D., Sattar, N., McInnes, I.B., and Liew, F.Y. (2010). Inter-

leukin-33 induces protective effects in adipose tissue inflammation during

obesity in mice. Circ. Res. 107, 650–658

.

Mirchandani, A.S., Besnard, A.-G., Yip, E., Scott, C., Bain, C.C., Cerovic, V.,



Salmond, R.J., and Liew, F.Y. (2014). Type 2 innate lymphoid cells drive

CD4+ Th2 cell responses. J. Immunol. 192, 2442–2448

.

Mjo¨sberg, J.M., Trifari, S., Crellin, N.K., Peters, C.P., van Drunen, C.M., Piet,



B., Fokkens, W.J., Cupedo, T., and Spits, H. (2011). Human IL-25- and

IL-33-responsive type 2 innate lymphoid cells are defined by expression of

CRTH2 and CD161. Nat. Immunol. 12, 1055–1062

.

Moffatt, M.F., Gut, I.G., Demenais, F., Strachan, D.P., Bouzigon, E., Heath, S.,



von Mutius, E., Farrall, M., Lathrop, M., and Cookson, W.O.; GABRIEL Con-

sortium (2010). A large-scale, consortium-based genomewide association

study of asthma. N. Engl. J. Med. 363, 1211–1221

.

Molofsky, A.V., Glasgow, S.M., Chaboub, L.S., Tsai, H.H., Murnen, A.T., Kel-



ley, K.W., Fancy, S.P.J., Yuen, T.J., Madireddy, L., Baranzini, S., et al.

(2013a). Expression profiling of Aldh1l1-precursors in the developing spinal

cord reveals glial lineage-specific genes and direct Sox9-Nfe2l1 interactions.

Glia 61, 1518–1532

.

Molofsky, A.B., Nussbaum, J.C., Liang, H.-E., Van Dyken, S.J., Cheng, L.E.,



Mohapatra, A., Chawla, A., and Locksley, R.M. (2013b). Innate lymphoid

type 2 cells sustain visceral adipose tissue eosinophils and alternatively acti-

vated macrophages. J. Exp. Med. 210, 535–549

.

Molofsky, A.B., Van Gool, F., Liang, H.-E., Van Dyken, S.J., Nussbaum, J.C.,



Lee, J., Bluestone, J.A., and Locksley, R.M. (2015). Interleukin-33 and IFN-g

counter-regulate Group 2 innate lymphoid cell activation during immune

perturbation. Immunity 43. Published online June 16, 2015.

http://dx.doi.org/

10.1016/j.immuni.2015.05.019

.

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G.K.,



Doering, T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala,

T., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after

infection with influenza virus. Nat. Immunol. 12, 1045–1054

.

Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Fur-



usawa, J., Ohtani, M., Fujii, H., and Koyasu, S. (2010). Innate production of T(H)

2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Na-

ture 463, 540–544

.

Moussion, C., Ortega, N., and Girard, J.-P. (2008). The IL-1-like cytokine IL-33



is constitutively expressed in the nucleus of endothelial cells and epithelial

cells in vivo: a novel ‘alarmin’? PLoS ONE 3, e3331

.

Muto, T., Fukuoka, A., Kabashima, K., Ziegler, S.F., Nakanishi, K., Matsushita,



K., and Yoshimoto, T. (2014). The role of basophils and proallergic cytokines,

TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 26,

539–549

.

Nabekura, T., Girard, J.-P., and Lanier, L.L. (2015). IL-33 Receptor ST2 Am-



plifies the Expansion of NK Cells and Enhances Host Defense during Mouse

Cytomegalovirus Infection. J. Immunol.

http://dx.doi.org/10.4049/jimmunol.

1500424, April 29, 2015.

Nakanishi, W., Yamaguchi, S., Matsuda, A., Suzukawa, M., Shibui, A., Nambu,

A., Kondo, K., Suto, H., Saito, H., Matsumoto, K., et al. (2013). IL-33, but not IL-

25, is crucial for the development of house dust mite antigen-induced allergic

rhinitis. PLoS ONE 8, e78099

.

Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K.A.,



Bucks, C., Kane, C.M., Fallon, P.G., Pannell, R., et al. (2010). Nuocytes repre-

sent a new innate effector leukocyte that mediates type-2 immunity. Nature



464, 1367–1370

.

Nussbaum, J.C., Van Dyken, S.J., von Moltke, J., Cheng, L.E., Mohapatra, A.,



Molofsky, A.B., Thornton, E.E., Krummel, M.F., Chawla, A., Liang, H.-E., and

Locksley, R.M. (2013). Type 2 innate lymphoid cells control eosinophil homeo-

stasis. Nature 502, 245–248

.

Oboki, K., Ohno, T., Kajiwara, N., Arae, K., Morita, H., Ishii, A., Nambu, A.,



Abe, T., Kiyonari, H., Matsumoto, K., et al. (2010). IL-33 is a crucial amplifier

of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA 107,

18581–18586

.

Oliphant, C.J., Hwang, Y.Y., Walker, J.A., Salimi, M., Wong, S.H., Brewer,



J.M., Englezakis, A., Barlow, J.L., Hams, E., Scanlon, S.T., et al. (2014).

MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+)

T cells potentiates type 2 immunity and promotes parasitic helminth expulsion.

Immunity 41, 283–295

.

Onda, H., Kasuya, H., Takakura, K., Hori, T., Imaizumi, T., Takeuchi, T., Inoue, I.,



and Takeda, J. (1999). Identification of genes differentially expressed in canine

vasospastic cerebral arteries after subarachnoid hemorrhage. J. Cereb. Blood

Flow Metab. 19, 1279–1288

.

Oshikawa, K., Kuroiwa, K., Tago, K., Iwahana, H., Yanagisawa, K., Ohno, S.,



Tominaga, S.I., and Sugiyama, Y. (2001). Elevated soluble ST2 protein levels

in sera of patients with asthma with an acute exacerbation. Am. J. Respir.

Crit. Care Med. 164, 277–281

.

Oshikawa, K., Yanagisawa, K., Tominaga, S., and Sugiyama, Y. (2002).



Expression and function of the ST2 gene in a murine model of allergic airway

inflammation. Clin. Exp. Allergy 32, 1520–1526

.

Palmer, G., and Gabay, C. (2011). Interleukin-33 biology with potential insights



into human diseases. Nat Rev Rheumatol 7, 321–329

.

Pastorelli, L., Garg, R.R., Hoang, S.B., Spina, L., Mattioli, B., Scarpa, M., Fioc-



chi, C., Vecchi, M., and Pizarro, T.T. (2010). Epithelial-derived IL-33 and its re-

ceptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2

driven enteritis. Proc. Natl. Acad. Sci. USA 107, 8017–8022

.

Pichery, M., Mirey, E., Mercier, P., Lefrancais, E., Dujardin, A., Ortega, N., and



Girard, J.-P. (2012). Endogenous IL-33 is highly expressed in mouse epithelial

barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ

analysis using a novel Il-33-LacZ gene trap reporter strain. J. Immunol. 188,

3488–3495

.

Polumuri, S.K., Jayakar, G.G., Shirey, K.A., Roberts, Z.J., Perkins, D.J., Pitha,



P.M., and Vogel, S.N. (2012). Transcriptional regulation of murine IL-33 by TLR

and non-TLR agonists. J. Immunol. 189, 50–60

.

Pomeshchik, Y., Kidin, I., Korhonen, P., Savchenko, E., Jaronen, M., Lehtonen,



S., Wojciechowski, S., Kanninen, K., Koistinaho, J., and Malm, T. (2015). Inter-

leukin-33 treatment reduces secondary injury and improves functional recov-

ery after contusion spinal cord injury. Brain Behav. Immun. 44, 68–81

.

Price, A.E., Liang, H.-E., Sullivan, B.M., Reinhardt, R.L., Eisley, C.J., Erle, D.J.,



and Locksley, R.M. (2010). Systemically dispersed innate IL-13-expressing

cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494

.

Qiu, Y., Nguyen, K.D., Odegaard, J.I., Cui, X., Tian, X., Locksley, R.M., Pal-



miter, R.D., and Chawla, A. (2014). Eosinophils and type 2 cytokine signaling

in macrophages orchestrate development of functional beige fat. Cell 157,

1292–1308

.

Rankin, A.L., Mumm, J.B., Murphy, E., Turner, S., Yu, N., McClanahan, T.K.,



Bourne, P.A., Pierce, R.H., Kastelein, R., and Pflanz, S. (2010). IL-33 induces

IL-13-dependent cutaneous fibrosis. J. Immunol. 184, 1526–1535

.

Rao, R.R., Long, J.Z., White, J.P., Svensson, K.J., Lou, J., Lokurkar, I., Jedry-



chowski, M.P., Ruas, J.L., Wrann, C.D., Lo, J.C., et al. (2014). Meteorin-like is a

hormone that regulates immune-adipose interactions to increase beige fat

thermogenesis. Cell 157, 1279–1291

.

Reinhardt, R.L., Hong, S., Kang, S.-J., Wang, Z.-E., and Locksley, R.M. (2006).



Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell

migrants that promote Th1 differentiation. J. Immunol. 177, 1618–1627

.

Reynolds, L.A., Harcus, Y., Smith, K.A., Webb, L.M., Hewitson, J.P., Ross,



E.A., Brown, S., Uematsu, S., Akira, S., Gray, D., et al. (2014). MyD88 signaling

Immunity 42, June 16, 2015

ª2015 Elsevier Inc. 1017

Immunity


Review

inhibits protective immunity to the gastrointestinal helminth parasite Heligmo-

somoides polygyrus. J. Immunol. 193, 2984–2993

.

Rickard, J.A., O’Donnell, J.A., Evans, J.M., Lalaoui, N., Poh, A.R., Rogers, T.,



Vince, J.E., Lawlor, K.E., Ninnis, R.L., Anderton, H., et al. (2014). RIPK1 regu-

lates RIPK3-MLKL-driven systemic inflammation and emergency hematopoi-

esis. Cell 157, 1175–1188

.

Rider, P., Carmi, Y., Voronov, E., and Apte, R.N. (2013). Interleukin-1a. Semin.



Immunol. 25, 430–438

.

Roediger, B., Kyle, R., Yip, K.H., Sumaria, N., Guy, T.V., Kim, B.S., Mitchell,



A.J., Tay, S.S., Jain, R., Forbes-Blom, E., et al. (2013). Cutaneous immunosur-

veillance and regulation of inflammation by group 2 innate lymphoid cells. Nat.

Immunol. 14, 564–573

.

Rostan, O., Arshad, M.I., Piquet-Pellorce, C., Robert-Gangneux, F., Gang-



neux, J.-P., and Samson, M. (2015). Crucial and diverse role of the Inter-

leukin-33/ST2 axis in infectious diseases. Infect. Immun. 83, 1738–1748

.

Roussel, L., Erard, M., Cayrol, C., and Girard, J.-P. (2008). Molecular mimicry



between IL-33 and KSHV for attachment to chromatin through the H2A-H2B

acidic pocket. EMBO Rep. 9, 1006–1012

.

Salimi, M., Barlow, J.L., Saunders, S.P., Xue, L., Gutowska-Owsiak, D., Wang,



X., Huang, L.-C., Johnson, D., Scanlon, S.T., McKenzie, A.N.J., et al. (2013). A

role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic derma-

titis. J. Exp. Med. 210, 2939–2950

.

Salker, M.S., Nautiyal, J., Steel, J.H., Webster, Z., Su



curovic, S., Nicou, M.,

Singh, Y., Lucas, E.S., Murakami, K., Chan, Y.-W., et al. (2012). Disordered

IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity

in women with recurrent pregnancy loss. PLoS ONE 7, e52252

.

Sanada, S., Hakuno, D., Higgins, L.J., Schreiter, E.R., McKenzie, A.N.J., and



Lee, R.T. (2007). IL-33 and ST2 comprise a critical biomechanically induced

and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549

.

Sa´nchez-Ma´s, J., Lax, A., Asensio-Lo´pez, Mdel.C., Fernandez-Del Palacio,



M.J., Caballero, L., Santarelli, G., Januzzi, J.L., and Pascual-Figal, D.A.

(2014). Modulation of IL-33/ST2 system in postinfarction heart failure: correla-

tion with cardiac remodelling markers. Eur. J. Clin. Invest. 44, 643–651

.

Sattler, S., Smits, H.H., Xu, D., and Huang, F.-P. (2013). The evolutionary role



of the IL-33/ST2 system in host immune defence. Arch. Immunol. Ther. Exp.

(Warsz.) 61, 107–117

.

Scalfone, L.K., Nel, H.J., Gagliardo, L.F., Cameron, J.L., Al-Shokri, S., Leifer,



C.A., Fallon, P.G., and Appleton, J.A. (2013). Participation of MyD88 and inter-

leukin-33 as innate drivers of Th2 immunity to Trichinella spiralis. Infect. Im-

mun. 81, 1354–1363

.

Schiering, C., Krausgruber, T., Chomka, A., Fro¨hlich, A., Adelmann, K., Wohl-



fert, E.A., Pott, J., Griseri, T., Bollrath, J., Hegazy, A.N., et al. (2014). The alar-

min IL-33 promotes regulatory T-cell function in the intestine. Nature 513,

564–568

.

Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K.,



Zurawski, G., Moshrefi, M., Qin, J., Li, X., et al. (2005). IL-33, an interleukin-1-

like cytokine that signals via the IL-1 receptor-related protein ST2 and induces

T helper type 2-associated cytokines. Immunity 23, 479–490

.

Seki, K., Sanada, S., Kudinova, A.Y., Steinhauser, M.L., Handa, V., Gannon, J.,



and Lee, R.T. (2009). Interleukin-33 prevents apoptosis and improves survival

after experimental myocardial infarction through ST2 signaling. Circ Heart Fail



2, 684–691

.

Senn, K.A., McCoy, K.D., Maloy, K.J., Stark, G., Fro¨hli, E., Ru¨licke, T., and Kle-



menz, R. (2000). T1-deficient and T1-Fc-transgenic mice develop a normal

protective Th2-type immune response following infection with Nippostrongy-

lus brasiliensis. Eur. J. Immunol. 30, 1929–1938

.

Shaw, J.L., Fakhri, S., Citardi, M.J., Porter, P.C., Corry, D.B., Kheradmand, F.,



Liu, Y.-J., and Luong, A. (2013). IL-33-responsive innate lymphoid cells are an

important source of IL-13 in chronic rhinosinusitis with nasal polyps. Am. J. Re-

spir. Crit. Care Med. 188, 432–439

.

Shimizu, C., Kim, J., Stepanowsky, P., Trinh, C., Lau, H.D., Akers, J.C., Chen,



C., Kanegaye, J.T., Tremoulet, A., Ohno-Machado, L., and Burns, J.C. (2013).

Differential expression of miR-145 in children with Kawasaki disease. PLoS

ONE 8, e58159

.

Smith, D.E. (2011). The biological paths of IL-1 family members IL-18 and IL-



33. J. Leukoc. Biol. 89, 383–392

.

Smithgall, M.D., Comeau, M.R., Yoon, B.-R.P., Kaufman, D., Armitage, R., and



Smith, D.E. (2008). IL-33 amplifies both Th1- and Th2-type responses through

its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells.

Int. Immunol. 20, 1019–1030

.

Snelgrove, R.J., Gregory, L.G., Peiro´, T., Akthar, S., Campbell, G.A., Walker,



S.A., and Lloyd, C.M. (2014). Alternaria-derived serine protease activity drives

IL-33-mediated asthma exacerbations. J Allergy Clin Immunol 134, 583–

592.e586

.

Sternlicht, M.D., Kouros-Mehr, H., Lu, P., and Werb, Z. (2006). Hormonal and



local control of mammary branching morphogenesis. Differentiation 74,

365–381


.

Sun, J.C., Ma, A., and Lanier, L.L. (2009). Cutting edge: IL-15-independent NK

cell response to mouse cytomegalovirus infection. J. Immunol. 183, 2911–

2914


.

Sun, L., Zhu, Z., Cheng, N., Yan, Q., and Ye, R.D. (2014). Serum amyloid A in-

duces interleukin-33 expression through an IRF7-dependent pathway. Eur. J.

Immunol. 44, 2153–2164

.

Sundlisaeter, E., Edelmann, R.J., Hol, J., Sponheim, J., Ku¨chler, A.M., Weiss,



M., Udalova, I.A., Midwood, K.S., Kasprzycka, M., and Haraldsen, G. (2012).

The alarmin IL-33 is a notch target in quiescent endothelial cells. Am. J. Pathol.



181, 1099–1111

.

Sundnes, O., Pietka, W., Loos, T., Sponheim, J., Rankin, A.L., Pflanz, S., Ber-



telsen, V., Sitek, J.C., Hol, J., Haraldsen, G., and Khnykin, D. (2015). Epidermal

Expression and Regulation of Interleukin-33 during Homeostasis and Inflam-

mation: Strong Species Differences. J. Invest. Dermatol. Published online

March 4, 2015.

http://dx.doi.org/10.1038/jid.2015.85

.

Talabot-Ayer, D., Lamacchia, C., Gabay, C., and Palmer, G. (2009). Interleukin-



33 is biologically active independently of caspase-1 cleavage. J. Biol. Chem.

284, 19420–19426

.

Talabot-Ayer, D., Calo, N., Vigne, S., Lamacchia, C., Gabay, C., and Palmer, G.



(2012). The mouse interleukin (Il)33 gene is expressed in a cell type- and stim-

ulus-dependent manner from two alternative promoters. J. Leukoc. Biol. 91,

119–125

.

Talabot-Ayer, D., Martin, P., Vesin, C., Seemayer, C.A., Vigne, S., Gabay, C.,



and Palmer, G. (2015). Severe neutrophil-dominated inflammation and

enhanced myelopoiesis in IL-33-overexpressing CMV/IL33 mice. J. Immunol.



194, 750–760

.

Tamiya, T., Kashiwagi, I., Takahashi, R., Yasukawa, H., and Yoshimura, A.



(2011). Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT

pathways: regulation of T-cell inflammation by SOCS1 and SOCS3. Arterios-

cler. Thromb. Vasc. Biol. 31, 980–985

.

Tominaga, S. (1989). A putative protein of a growth specific cDNA from BALB/



c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1

receptor. FEBS Lett. 258, 301–304

.

Torgerson, D.G., Ampleford, E.J., Chiu, G.Y., Gauderman, W.J., Gignoux,



C.R., Graves, P.E., Himes, B.E., Levin, A.M., Mathias, R.A., Hancock, D.B.,

et al.; Mexico City Childhood Asthma Study (MCAAS); Children’s Health Study

(CHS) and HARBORS study; Genetics of Asthma in Latino Americans (GALA)

Study, Study of Genes-Environment and Admixture in Latino Americans

(GALA2) and Study of African Americans, Asthma, Genes & Environments

(SAGE); Childhood Asthma Research and Education (CARE) Network; Child-

hood Asthma Management Program (CAMP); Study of Asthma Phenotypes

and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE); Genetic

Research on Asthma in African Diaspora (GRAAD) Study (2011). Meta-analysis

of genome-wide association studies of asthma in ethnically diverse North

American populations. Nat. Genet. 43, 887–892

.

Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E., and McKenzie, A.N.



(2000). T1/ST2-deficient mice demonstrate the importance of T1/ST2 in devel-

oping primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076

.

Tsuda, H., Komine, M., Karakawa, M., Etoh, T., Tominaga, S., and Ohtsuki, M.



(2012). Novel splice variants of IL-33: differential expression in normal and

transformed cells. J. Invest. Dermatol. 132, 2661–2664

.

Turczy


nska, K.M., Sadegh, M.K., Hellstrand, P., Swa¨rd, K., and Albinsson, S.

(2012). MicroRNAs are essential for stretch-induced vascular smooth muscle

1018 Immunity 42, June 16, 2015

ª2015 Elsevier Inc.

Immunity

Review


contractile differentiation via microRNA (miR)-145-dependent expression of

L-type calcium channels. J. Biol. Chem. 287, 19199–19206

.

Turer, E.E., Tavares, R.M., Mortier, E., Hitotsumatsu, O., Advincula, R., Lee, B.,



Shifrin, N., Malynn, B.A., and Ma, A. (2008). Homeostatic MyD88-dependent

signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205,

451–464

.

Turner, J.-E., Morrison, P.J., Wilhelm, C., Wilson, M., Ahlfors, H., Renauld,



J.-C., Panzer, U., Helmby, H., and Stockinger, B. (2013). IL-9-mediated sur-

vival of type 2 innate lymphoid cells promotes damage control in helminth-

induced lung inflammation. J. Exp. Med. 210, 2951–2965

.

Turnquist, H.R., Zhao, Z., Rosborough, B.R., Liu, Q., Castellaneta, A., Isse, K.,



Wang, Z., Lang, M., Stolz, D.B., Zheng, X.X., et al. (2011). IL-33 expands sup-

pressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+

cells, and mediates regulatory T cell-dependent promotion of cardiac allograft

survival. J. Immunol. 187, 4598–4610

.

Van Dyken, S.J., Mohapatra, A., Nussbaum, J.C., Molofsky, A.B., Thornton,



E.E., Ziegler, S.F., McKenzie, A.N.J., Krummel, M.F., Liang, H.-E., and Locks-

ley, R.M. (2014). Chitin activates parallel immune modules that direct distinct

inflammatory responses via innate lymphoid type 2 and gd T cells. Immunity

40, 414–424

.

Vasanthakumar, A., Moro, K., Xin, A., Liao, Y., Gloury, R., Kawamoto, S., Fa-



garasan, S., Mielke, L.A., Afshar-Sterle, S., Masters, S.L., et al. (2015). The

transcriptional regulators IRF4, BATF and IL-33 orchestrate development

and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol.

16, 276–285

.

Villarreal, D.O., and Weiner, D.B. (2014). Interleukin 33: a switch-hitting cyto-



kine. Curr. Opin. Immunol. 28, 102–106

.

Villarreal, D.O., and Weiner, D.B. (2015). IL-33 isoforms: their future as vaccine



adjuvants? Expert Rev. Vaccines 14, 489–492

.

Villarreal, D.O., Wise, M.C., Walters, J.N., Reuschel, E.L., Choi, M.J., Obeng-



Adjei, N., Yan, J., Morrow, M.P., and Weiner, D.B. (2014). Alarmin IL-33 acts as

an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res.



74, 1789–1800

.

Voehringer, D. (2012). Basophil modulation by cytokine instruction. Eur. J.



Immunol. 42, 2544–2550

.

von Moltke, J., and Locksley, R.M. (2014). I-L-C-2 it: type 2 immunity and



group 2 innate lymphoid cells in homeostasis. Curr. Opin. Immunol. 31, 58–65

.

Wang, K., Long, B., Zhou, J., and Li, P.-F. (2010). miR-9 and NFATc3 regulate



myocardin in cardiac hypertrophy. J. Biol. Chem. 285, 11903–11912

.

Weinberg, E.O., Shimpo, M., De Keulenaer, G.W., MacGillivray, C., Tominaga,



S., Solomon, S.D., Rouleau, J.-L., and Lee, R.T. (2002). Expression and regu-

lation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and

myocardial infarction. Circulation 106, 2961–2966

.

Werenskiold, A.K., Hoffmann, S., and Klemenz, R. (1989). Induction of a



mitogen-responsive gene after expression of the Ha-ras oncogene in NIH

3T3 fibroblasts. Mol. Cell. Biol. 9, 5207–5214

.

Wicher, G., Husic, E., Nilsson, G., and Forsberg-Nilsson, K. (2013). Develop-



mental expression of IL-33 in the mouse brain. Neurosci. Lett. 555, 171–176

.

Wilhelm, C., Hirota, K., Stieglitz, B., Van Snick, J., Tolaini, M., Lahl, K., Spar-



wasser, T., Helmby, H., and Stockinger, B. (2011). An IL-9 fate reporter dem-

onstrates the induction of an innate IL-9 response in lung inflammation. Nat.

Immunol. 12, 1071–1077

.

Willart, M.A.M., Deswarte, K., Pouliot, P., Braun, H., Beyaert, R., Lambrecht,



B.N., and Hammad, H. (2012). Interleukin-1a controls allergic sensitization to

inhaled house dust mite via the epithelial release of GM-CSF and IL-33.

J. Exp. Med. 209, 1505–1517

.

Wood, I.S., Wang, B., and Trayhurn, P. (2009). IL-33, a recently identified inter-



leukin-1 gene family member, is expressed in human adipocytes. Biochem.

Biophys. Res. Commun. 384, 105–109

.

Wu, J., Carlock, C., Zhou, C., Nakae, S., Hicks, J., Adams, H.P., and Lou, Y.



(2015). IL-33 is required for disposal of unnecessary cells during ovarian atresia

through regulation of autophagy and macrophage migration. J. Immunol. 194,

2140–2147

.

Wu, D., Molofsky, A.B., Liang, H.-E., Ricardo-Gonzalez, R.R., Jouihan, H.A.,



Bando, J.K., Chawla, A., and Locksley, R.M. (2011). Eosinophils sustain adi-

pose alternatively activated macrophages associated with glucose homeosta-

sis. Science 332, 243–247

.

Xu, D., Chan, W.L., Leung, B.P., Huang, Fp., Wheeler, R., Piedrafita, D., Rob-



inson, J.H., and Liew, F.Y. (1998). Selective expression of a stable cell surface

molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187, 787–794

.

Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T., and Sato, S. (2011). Serum



IL-33 levels are raised in patients with systemic sclerosis: association with

extent of skin sclerosis and severity of pulmonary fibrosis. Clin. Rheumatol.



30, 825–830

.

Yanagisawa, K., Takagi, T., Tsukamoto, T., Tetsuka, T., and Tominaga, S.



(1993). Presence of a novel primary response gene ST2L, encoding a product

highly similar to the interleukin 1 receptor type 1. FEBS Lett. 318, 83–87

.

Yanagisawa, K., Naito, Y., Kuroiwa, K., Arai, T., Furukawa, Y., Tomizuka, H.,



Miura, Y., Kasahara, T., Tetsuka, T., and Tominaga, S. (1997). The expression

of ST2 gene in helper T cells and the binding of ST2 protein to myeloma-

derived RPMI8226 cells. J. Biochem. 121, 95–103

.

Yang, Q., Li, G., Zhu, Y., Liu, L., Chen, E., Turnquist, H., Zhang, X., Finn, O.J.,



Chen, X., and Lu, B. (2011). IL-33 synergizes with TCR and IL-12 signaling to

promote the effector function of CD8+ T cells. Eur. J. Immunol. 41, 3351–3360

.

Yang, S., Fujikado, N., Kolodin, D., Benoist, C., and Mathis, D. (2015). Immune



tolerance. Regulatory T cells generated early in life play a distinct role in main-

taining self-tolerance. Science 348, 589–594

.

Yasuoka, S., Kawanokuchi, J., Parajuli, B., Jin, S., Doi, Y., Noda, M., Sonobe,



Y., Takeuchi, H., Mizuno, T., and Suzumura, A. (2011). Production and func-

tions of IL-33 in the central nervous system. Brain Res. 1385, 8–17

.

Yin, H., Li, X., Hu, S., Liu, T., Yuan, B., Gu, H., Ni, Q., Zhang, X., and Zheng, F.



(2013). IL-33 accelerates cutaneous wound healing involved in upregulation of

alternatively activated macrophages. Mol. Immunol. 56, 347–353

.

Yu, X.-X., Hu, Z., Shen, X., Dong, L.-Y., Zhou, W.-Z., and Hu, W.-H. (2015).



IL-33 promotes gastric cancer cell invasion and migration via ST2-ERK1/2

pathway. Dig. Dis. Sci. 60, 1265–1272

.

Zaiss, M.M., Maslowski, K.M., Mosconi, I., Guenat, N., Marsland, B.J., and



Harris, N.L. (2013). IL-1b suppresses innate IL-25 and IL-33 production and

maintains helminth chronicity. PLoS Pathog. 9, e1003531

.

Zeyda, M., Wernly, B., Demyanets, S., Kaun, C., Ha¨mmerle, M., Hantusch, B.,



Schranz, M., Neuhofer, A., Itariu, B.K., Keck, M., et al. (2013). Severe obesity

increases adipose tissue expression of interleukin-33 and its receptor ST2,

both predominantly detectable in endothelial cells of human adipose tissue.

Int J Obes (Lond) 37, 658–665

.

Immunity 42, June 16, 2015



ª2015 Elsevier Inc. 1019

Immunity


Review

Document Outline

  • Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation
    • Introduction
    • Molecular Characterization of IL-33
    • IL-33 Release and/or Secretion
    • The IL-33 Receptor Subunit ST2
    • Soluble ST2
    • ST2L Signaling
    • Sources and Production of IL-33
    • IL-33 in Tissue Homeostasis
    • Adipose Tissue
    • Female Reproductive Tissues
    • Central Nervous System
    • IL-33 in Type 2 Immune Responses
    • IL-33 and Helminth Infection
    • IL-33 in Allergic Pathology
    • IL-33 in Tissue Damage, Repair, and Fibrosis
    • IL-33-ST2 in Infection and Non-Allergic Inflammation
    • Integrating the Spectrum of IL-33 Activities
    • Stage 1: Homeostasis
    • Stage 2: Amplification
    • Stage 3: Conversion
    • Acknowledgments
    • References

Download 452.67 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling