Informatika
Download 1.31 Mb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- 3-Topshiriq:Berilgan uchburchakning ma’lum parametrlariga asoslanib, noma’lum parametrlarinini topish algoritmi va dasturini tuzing.
- 3- topshiriqni bajarishga amaliy ko`rsatma
53
54
Hisobotda quyidagilar bo`lishi kerak: 1) Variantingaz sharti 2) Dastur teksti 3) Hisob natijasi (Monitordan ko`chirib oling)
1-variant a) U xz b e xz b x a a x arctg log
3 b) Yq x x c x x b ax sin
3 2 2 2 cos
2-variant a) Y 0,5)І І(xІ
lgcos
xі x sin 3 b) T 3 2yІ
xІ ) ( І sin
2 kx e x
3-variant a) Z 3 2
2 5 2 2 sin
sin c b a x b Ln x a b) T 3 2yІ
xІ ) ( І sin
2 kx e x
4-variant a) U 4 3
3 3 3 3 2 . 1 lg 1 . 1 lg sec 1 . 1 x x x x arctg b) T 2 2
1 1 cos 3 2
x x x
5-variant a) 5 3 2 cos
3 9 . 3 4 . 3 arccos
45 . 0 cos 15 . 2 x Ln xe x x Y x b) 4 2
2 2 cos sin 2
x x e T x
6-variant a) 3 3 2 sin
3 2 cos 65 . 0 75 . 0 sin 5 . 2 x xe x tg x Y x b) 2 2
2 3 2 2 cos
z x z x x z e e x z x V
7-variant a) 3 2 2 3 3 2 2 . 1 lg 2 . 1 sec 5 . 1 x x tg x x arctg Y b) x x c tgx b ax Z ln 2 2 2 2 x x e b x 2
8- variant a) 1 3 3 lg ln sin sin
ln x e x y x Z b) 3 4
) sin
(cos x arctg x x Y
55
9- variant a) 2 log
3 10 2 2 x x e x ab Z k kx Y
2
1 2 1 cos 3 1 2 2 2 3 4
t x k x x
x x n x x x Y lg sin 1 cos
7 . 2 6 . 1 5 . 1 sin 3 2 2 3 b) T 2 3 5 . 0 1 sin 3
x x y x e x
11-variant a) 2 3 2 6 2 3 2 2 ln cos
sin x b ax ax b x a Y b) 1 1
. 1 2 . 1 ln 3 2
x x x e Z x
12-variant a) 2 3 3 log
3 2 arccos x ax ax e x Y a x b) Я 2
log x t e x tg T
13-variant a)
log
3 b) b a x ac b abx Z 1 4 3 2
14-variant a) ) 3 )( 2 ( 4 ) ( arccos 2
ax e b x arctg x Y x at b) ac b ac b abx T 4 4 2 3 5 2
15-variant a) a b ax t x arctgx e x b x a 2 2 3 3 cos 1 b) 2 3
1 x e - 5 3 x x T x t
56
16-variant a) Y a x b mx b a x x e a b a e arctg ab m 2 2 1 b) 2 0001
. 0 05 . 2 1 10 ) sin( 6 2
x e y x e xy Z
17-variant a) 00002
. 0 log log ) ( log 2 2 2 2
a a a b x tg b a x arctg a x Y b b) 3 5
4 8 10 1 10
a x n e Z x
18- variant a)
lg 2 2 b) 003 .
2 0003
. 0 2 1 1
e mx x g x b a e tg Y
19- variant a) 1 2 0004 , 0 2 2 2 9 ln 4 r v x x r r v v r Y b) 2 3
3 si n
2 cos
x x e e x x e Z x
a) x x x tg arctgx e Y a x cos
1 sin
1 log
2 1 ) ( log
2 2 3 sin v )
x ф ч arctg be a x e Z ln ) (
21-variant a) 2 3 lg 2 3 x ax e a x cb g ax arctgx Y
b)
cos
2 cos
22-variant a) 3 2 7 ) ( sin cos
ab bx a x ctg bx be x Y x
b) 5
2 2 3 001 . 0 2 3 arcsin 2 ctg bc ax a Z c a
7- вариант ax_-_b²Tgx² 2x_-_b
a) y = (arctg_²(x³)_+_1,5_Sec_³√x)² b) z = c²x²Lnx x
xe Tg(1,2x) + Lg²(1,2 x³) 57
23-variant a) ) 1
10 48 . 8 log
10 * 4 6 . 36 8 4 8 6 x x x x Y
b) b ax x Z a x 5 7 3 10 * 5 ) 3 6 ( arccos 24-variant a) 5
10 * 6 . 55 4 . 136
ln 10 ) 6 sin(
2 b a x e Y x b) a x tg b a x arctg a x Z lg 2 2
25-variant a)
8 04 . 1 3 4 5 10 2 3 sin
arg 3 log ln 2
x e bx a ax b a Y x b)
5 4 2 10 * 133 12 . 26 15 lg 10 ) cos(
arg ax c a b a Z
26-variant a) 4 1
8 5 5 2 23 . 4 cos
10 * 38 . 6 log 5 1 10 * 32 . 6 t W t W t p tgt W A
b) 3 cos
10 * 001 . 9 1 2 3 2 1 2 2 3 X tgx e K h A X x
27-variant a) k w k wx k w Sin c x c x C A lg 4 2 1 2 0 15
b) k w tg t t v k t w x t A cos
2 cos
16
28-variant a) 7 20 10 * 51 . 0 cos 2 v w v w arctg t t v k t w A
b) t e t A t sin
25 31 . 6 10 * 58 . 4 5
29-variant a) x y x A cos
5 10 cos 10 * 723 . 6 4 2 3 5 7 4
b) t x e t c x t w e A 3 3 5 10 * 0005 . 4 sin cos
30-variant a)
sin
log 25 31 . 6 10 * 66 . 4 5 12 1
b) 7 2 10 * 51 . 0 cos
2 sin
v w v w arctg t t v k t w a e A w
58
3-Topshiriq:Berilgan uchburchakning ma’lum parametrlariga asoslanib, noma’lum parametrlarinini topish algoritmi va dasturini tuzing. Hisobotda quyidagilar bo`lishi kerak: 2) Dastur matni 3) Hisob natijasi (Monitordan ko`chirib oling)
Ushbu laboratoriya topshirig`ini yechishda kuyidagi ma‘lumotlar foydali bo`ladi: Ixtiyoriy AVS uchburchak berilgan bo`lsin.
S A
V a, b, s - Uchburchakning tomonlari. ά, β, γ - Uchburchakning a,v,s tomoyalari tugrisida yotuvchi mos burchaklar. S, R - Uchburchakni yuzasi va perimetri. R, g - Uchburchakga tashki va ichki chizilgan aylana; Quyidagi formulalardan foydalanishni tavsiya etamiz.
2 sin sin sin
(1) (Sinuslar teoremasi) a 2
2 = s
2 - 2bc Cos
(2)
(Kosinuslar teoremasi)
P = a + b + c (3) (Uchburchakning perimetri) PI = 2
(4)
(Uchburchakning yarim perimetri)
S abc R 4 (5) (Uchburchak tashkarisiga chizilgan aylananing radiusi)
c b a S r 2
(6) (Uchburchak ichiga chizilgan aylananing radiusi)
2 1 (7)
) )( )( ( c PI b PI a PI PI S
(8) Geron formulasi. Uchburchakning aniklovchi parametrlari: uchburchakning uchta burchagi, uchburchakning yuzasi (S) uchburchakning perimetri (R) uchburchakka ichki va tashki chizilgan aylanalarning radiuslari (g, R).
|
ma'muriyatiga murojaat qiling