случайными величинами в отличие от оцениваемого параметра θ - величины неслучайной, поэтому правильнее говорить о том, что интервал «накрывает», а не «содержит» значение θ.
Такой интервал называется доверительным, а вер-ть γ - доверительной вер-тью, уровнем доверия или надежностью оценки.
Величина доверительного интервала существенно зависит от объема выборки n (уменьшается с ростом n) и от значения доверительной вер-ти γ (увеличивается с приближением γ к 1).
Очень часто (но не всегда) доверительный интервал выбирается симметричным относительно параметра θ, т.е. (θ-Δ,θ+Δ).
Наибольшее отклонение Δ оценки от оцениваемого параметра θ, в частности, выборочной средней (или доли) от генеральной средней (или доли), к-ое возможно с заданной доверительной вер-тью γ, называется предельной ошибкой выборки.
Ошибка Δ является ошибкой репрезентативности (представительства) выборки. Она возникает только вследствие того, что исследуется не вся совок-ть, а лишь часть, ее (выборка), отобранная случайно. Эту ошибку часто называют случайной ошибкой репрезентативности. Ее не следует путать с систематической ошибкой репрезентативности, появляющейся в рез-те нарушения принципа случайности при отборе элементов в выборку.
Формула доверительной вероятности при оценке генеральной доли признака. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной доли признака.
Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной средней.
Do'stlaringiz bilan baham: |