r = √ 1 2 + 1 2 = √ 2 .
Shuning uchun gunoh φ = 1 / √ 2 , cos φ = 1 / √ 2 , qaerdan φ = π / 4 + 2nπ .
Shunday qilib,
1 + i = √ 2 ,
qayerda P - har qanday butun son. Odatda, murakkab son argumentining cheksiz qiymatlari to'plamidan 0 dan 2 gacha bo'lgan biri tanlanadi. π . Bunday holda, bu qiymat π / 4 . Shunung uchun
1 + i = √ 2 (cos π / 4 + i gunoh π / 4)
2-misol Kompleks sonni trigonometrik shaklda yozing √ 3 - i . Bizda ... bor:
r = √ 3+1 = 2 cos φ = √ 3/2, gunoh φ = - 1 / 2
Shuning uchun, 2 ga bo'linadigan burchakka qadar π , φ = 11 / 6 π ; Binobarin,
√ 3 - i = 2(cos 11/6 π + i gunoh 11/6 π ).
3-misol Kompleks sonni trigonometrik shaklda yozing men.
Do'stlaringiz bilan baham: |