Kompyuterning tashkil etilishi


Download 102.83 Kb.
bet5/6
Sana18.06.2023
Hajmi102.83 Kb.
#1570116
1   2   3   4   5   6
Bog'liq
2-mustaqil ish

Oʻz-oʻzini oʻrganish
Neyron tarmoqlarda oʻz-oʻzini oʻrganish 1982-yilda Crossbar Adaptive Array (CAA) deb nomlangan oʻz-oʻzini oʻrganishga qodir neyron tarmogʻi bilan birga kiritilgan.[65] Bu faqat bitta kirish, vaziyat s va faqat bitta chiqish, harakat (yoki xatti-harakatlar) boʻlgan tizimdir. Unda na tashqi maslahat kiritish, na atrof-muhitdan tashqi mustahkamlash kiritish mavjud. Tizim idrok va hissiyot oʻrtasidagi oʻzaro taʼsir orqali boshqariladi.[66] 

Xotira matritsasi W =||w(a, s)|| ni hisobga olgan holda, har bir iteratsiyada oʻzaro bogʻliqlikni oʻz-oʻzidan oʻrganish algoritmi quyidagi hisoblashni amalga oshiradi:


In situation s perform action a;
Receive consequence situation s';
Compute emotion of being in consequence situation v(s');
Update crossbar memory w'(a,s) = w(a,s) + v(s').
CAA ikkita muhitda mavjud boʻlib, biri oʻzini tutadigan xulq-atvor muhiti va ikkinchisi genetik muhit boʻlib, u erdan dastlab va faqat bir marta xulq-atvor muhitida duch keladigan vaziyatlar haqida dastlabki his-tuygʻularni oladi. Genetik muhitdan genom vektorini (turlar vektorini) olgandan soʻng, CAA kerakli va nomaqbul vaziyatlarni oʻz ichiga olgan xulq-atvor muhitida maqsadga intiladigan xatti-harakatni oʻrganadi.[67]
Neyroevolyutsiya
Neyroevolyutsiya evolyutsion hisoblash yordamida neyron tarmoq topologiyalari va ogʻirliklarini yaratishi mumkin. Neyroevolyutsiyaning afzalliklaridan biri shundaki, u „oʻlik nuqtalar“ ga tushib qolishga kamroq moyil boʻlishi mumkin.
Stokastik neyron tarmogʻi
Sherrington-Kirkpatrik modellaridan kelib chiqqan stoxastik neyron tarmoqlar tarmoqqa tasodifiy oʻzgarishlar kiritish yoki tarmoqning sunʼiy neyronlariga stokastik uzatish funksiyalarini, berish yoki ularga stokastik ogʻirliklar berish orqali qurilgan sunʼiy neyron tarmoq turidir.Bu ularni optimallashtirish muammolari uchun foydali vositalarga aylantiradi, chunki tasodifiy tebranishlar tarmoqni mahalliy minimaldan qochishga yordam beradi.
Boshqa
Evolyutsion usullar, gen ifodasini dasturlash, simulyatsiya qilingan tavlanish, kutish-maksimizatsiya, parametrik boʻlmagan usullar va zarrachalar toʻdasini optimallashtirish boshqa oʻrganish algoritmlaridir. Konvergent rekursiya — serebellar model artikulyatsiya boshqaruvchisi (CMAC) neyron tarmoqlarini oʻrganish algoritmi.
Oʻrganishning ikkita usuli mavjud: stokastik va ommaviy. Stokastik oʻrganishda har bir kiritish vazNTi sozlashni yaratadi. Toʻplamda oʻrganish ogʻirliklari partiya boʻyicha xatolar toʻplanib, kirishlar partiyasi asosida oʻrnatiladi. Biroq, toʻplamli oʻrganish odatda mahalliy minimal darajaga tezroq va barqaror pasayish imkonini beradi, chunki har bir yangilash partiyaning oʻrtacha xatosi yoʻnalishi boʻyicha amalga oshiriladi. Umumiy kelishuv „mini-partiyalar“ dan, har bir partiyadagi namunalar bilan butun maʼlumotlar toʻplamidan stokastik tarzda tanlangan kichik partiyalardan foydalanishdir.
SNT koʻplab sohalarda eng ilgʻor texnologiyalarning keng oilasiga aylandi. Eng oddiy turlar bir yoki bir nechta statik komponentlarga ega. Jumladan birliklar soni, qatlamlar soni, birlik ogʻirliklari va topologiya.Dinamik turlar ulardan bir yoki bir nechtasini oʻrganish orqali rivojlanishiga imkon beradi. Ikkinchisi ancha murakkab, ammo oʻrganish muddatlarini qisqartirishi va yaxshi natijalar berishi mumkin. Baʼzi turlari faqat apparatda ishlaydi, boshqalari esa sof dasturiy taʼminot boʻlib, umumiy maqsadli kompyuterlarda ishlaydi.
Baʼzi asosiy yutuqlarga quyidagilar kiradi: vizual va boshqa ikki oʻlchovli maʼlumotlarni qayta ishlashda ayniqsa muvaffaqiyatli boʻlgan konvolyutsion neyron tarmoqlari.[75][76] Qisqa muddatli uzoq muddatli xotira yoʻqolib borayotgan gradient muammosidan qochadi[77] va katta lugʻatli nutqni aniqlashga yordam beruvchi past va yuqori chastotali komponentlar aralashmasiga ega boʻlgan signallarni boshqara oladi,[78][79] matndan to-nutq sintezi,[80][78] Raqobatbardosh tarmoqlar, masalan, bir nechta tarmoqlar (turli xil tuzilishdagi) oʻyinda gʻalaba qozonish[81] yoki kiritilgan maʼlumotlarning haqiqiyligi haqida raqibni aldash kabi vazifalarda bir-biri bilan raqobatlashadigan generativ raqib tarmoqlari.[82]
Tarmoq dizayni[tahrir | manbasini tahrirlash]
Neyron arxitektura qidiruvi (NAS) SNT dizaynini avtomatlashtirish uchun mashinani oʻrganishdan foydalanadi. Asosiy qidiruv algoritmi nomzod modelini taklif qilish, uni maʼlumotlar toʻplamiga nisbatan baholash va natijalardan NAS tarmogʻini oʻrgatish uchun fikr-mulohaza sifatida foydalanishdir.[83] Mavjud tizimlar orasida AutoML va AutoKeras mavjud.[84]
Dizayn masalalari tarmoq qatlamlarining soni, turi va ulanishini, shuningdek, har birining oʻlchamini va ulanish turini (toʻliq, birlashma,...).
Giperparametrlar, shuningdek, dizayNTing bir qismi sifatida aniqlanishi kerak(ular oʻrganilmagan), har bir qatlamda qancha neyron borligi, oʻrganish tezligi, qadam, qadam, chuqurlik, qabul qiluvchi maydon va toʻldirish (CNT uchun) va hokazo.
Sunʼiy neyron tarmoqlardan foydalanish ularning xususiyatlarini tushunishni talab qiladi.

  • Modelni tanlash: Bu maʼlumotlar taqdimoti va ilovaga bogʻliq. Haddan tashqari murakkab modellar sekin oʻrganishdir.

  • Oʻrganish algoritmi: Oʻrganish algoritmlari oʻrtasida koʻplab kelishuvlar mavjud. Deyarli har qanday algoritm maʼlum bir maʼlumotlar toʻplamini oʻqitish uchun toʻgʻri giperparametrlar bilan yaxshi ishlaydi. Biroq, koʻrinmas maʼlumotlar boʻyicha trening algoritmini tanlash va sozlash muhim tajribani talab qiladi.

  • Barqarorlik: Agar model, xarajat funksiyasi va oʻrganish algoritmi toʻgʻri tanlangan boʻlsa, natijada SNT mustahkam boʻlishi mumkin.

SNT imkoniyatlari quyidagi keng toifalarga kiradi: 

  • Funksiyani yaqinlashtirish yoki regressiya tahlili, jumladan, vaqt seriyasini bashorat qilish, fitnesga yaqinlashtirish va modellashtirish.

  • Tasniflash, shu jumladan naqsh va ketma-ketlikni aniqlash, yangilikni aniqlash va ketma-ket qaror qabul qilish.

  • Maʼlumotlarni qayta ishlash, jumladan, filtrlash, klasterlash, koʻr manbalarni ajratish va siqish.

  • Robototexnika, shu jumladan boshqarish manipulyatorlari va protezlari.

Qoʻllash sohalariga tizimni identifikatsiyalash va boshqarish (avtomobilni boshqarish, traektoriyani bashorat qilish jarayoNTi boshqarish, tabiiy resurslarni boshqarish), kvant kimyosi, umumiy oʻyin oʻynash naqshni aniqlash (radar tizimlari, yuzni identifikatsiyalash, signal tasnifi,[ 3D rekonstruksiya, obyektni aniqlash va boshqalar), sensor maʼlumotlarini tahlil qilish, ketma-ketlikni aniqlash (imo-ishora, nutq, qoʻlda yozilgan va bosilgan matNTi aniqladi), tibbiy diagnostika, moliya(masalan, avtomatlashtirilgan savdo tizimlari), maʼlumotlarni qidirish, vizualizatsiya, mashina tarjimasi,ijtimoiy tarmoqlarni filtrlash va elektron pochta spamlarini filtrlash.SNTlar bir nechta saraton turlarini tashxislash uchun. Faqat hujayra shakli haqidagi maʼlumotlardan foydalangan holda yuqori invaziv saraton hujayralarini kamroq invaziv chiziqlardan ajratish uchun ishlatilgan.
SNT tabiiy ofatlarga duchor boʻlgan infratuzilmalarning ishonchliligini tahlil qilishni tezlashtirish uchun va poydevor qoʻyishlarini bashorat qilish uchun ishlatilgan.] SNT geofanda qora quti modellarini yaratish uchun ham ishlatilgan: gidrologiya, okeanlarni modellashtirish va qirgʻoq muhandisligi, va geomorfologiya. SNTlar kiberxavfsizlikda qonuniy faoliyat va zararli harakatlar oʻrtasidagi farqni aniqlash maqsadida ishlatilgan. Masalan, mashinani oʻrganish Android zararli dasturlarini tasniflash,[106] tahdid qiluvchi shaxslarga tegishli domenlarni aniqlash va xavfsizlikka xavf tugʻdiruvchi URL manzillarni aniqlash uchun ishlatilgan.[107] Penetratsion testlar, botnetlar,[108] kredit kartalari boʻyicha firibgarlik[109].
SNT fizikada qisman differensial tenglamalarni yechish va koʻp jismli ochiq kvant tizimlarining xususiyatlarini simulyatsiya[110] uchun vosita sifatida[111][112].[113][114][115][116] Miya tadqiqotida SNTlar individual neyronlarning qisqa muddatli xatti-harakatlarini oʻrgandilar,[117] neyron zanjirining dinamikasi individual neyronlar oʻrtasidagi oʻzaro taʼsirlardan va xatti-harakatlarning toʻliq quyi tizimlarni ifodalovchi mavhum neyron modullaridan qanday kelib chiqishi mumkinligidan kelib chiqadi.
Koʻp qatlamli perseptron universal yaqinlashish teoremasi bilan tasdiqlangan universal funksiya yaqinlashtiruvchisi hisoblanadi. Biroq, talab qilinadigan neyronlar soni, tarmoq topologiyasi, ogʻirliklar va oʻrganish parametrlari boʻyicha isbot konstruktiv emas.
Ratsional qiymatli ogʻirliklarga ega oʻziga xos takrorlanuvchi arxitektura (toʻliq aniqlikdagi haqiqiy sonli ogʻirliklardan farqli oʻlaroq). Cheklangan miqdordagi neyronlar va standart chiziqli ulanishlardan foydalangan holda universal Tyuring mashinasining kuchiga ega[118]. Bundan tashqari, ogʻirliklar uchun irratsional qiymatlardan foydalanish super-Tyuring kuchiga ega boʻlgan mashinaga olib keladi.[119]

Download 102.83 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling