Lejandr va yakobi simvollari


Natija. Agar a son m Modul bo`yicha  ko`rsatkichga tegishli bo`lsa, u holda ak soni shu Modul bo`yicha ko`rsatkichga tegishli bo`ladi


Download 322.58 Kb.
bet5/10
Sana18.06.2023
Hajmi322.58 Kb.
#1558811
1   2   3   4   5   6   7   8   9   10
Bog'liq
Sodiqov Sardor

Natija. Agar a son m Modul bo`yicha  ko`rsatkichga tegishli bo`lsa, u holda ak soni shu Modul bo`yicha ko`rsatkichga tegishli bo`ladi.

Natija. Agar (;k)=1 bo`lsa, u holda a son  ko`rsatkichga tegishli bo`ladi.

Ta’rif. Agar (a,m)=1 bo`lib, =(m) bo`lsa, u holda a son m Modul bo`yicha boshlang`ich ildiz deyiladi. (m) ning o`zidan boshqa hamma bo`luvchilarini

topganimizda, bu bo`luvchilardagi ixtiyoriy a son bo`lganda a son uchun a1(modm) bo`lsa, u holda a son m Modul bo`yicha boshlang`ich ildiz bo`ladi.

4,5,6,7,8,9,10 sonlarning ham 11 Modul bo`yicha boshlang`ich ildiz yoki boshlang`ich ildiz emas ekanligini shu yo`l bilan tekshirib ko`riladi. Ba’zi modulga ko`ra boshlang`ich ildiz bo`lmasligi mumkin.

Masalan, m=5 bo`lsa, (15)=8 bo`lib, ko`rsatkichi 8 ga teng bo`lgan son mavjud emas.

Boshlang`ich ildizlar faqatgina m=2, 4, r, 2p (r-toq tub son,  1 natural son) sonlar uchun mavjud bo`ladi. Boshlang`ich ildizlar bevosita hisoblash usulida topiladi.

Lemma. r-tub son bo`lib,  son r-1 sonning bo`luvchisi bo`lsin, u holda r Modul bo`yicha chegirmalarning keltirilgan sinflar sistemasida  ko`rsatkichga tegishli sinflar soni () ta bo`ladi.

Teorema. r tub Modul bo`yicha tuzilgan r-1 sonning har bir bo`luvchisi ( ) ta sinfning ko`rsatkichi bo`ladi. Xususiy holda (r-1) ta boshlang`ich ildizlar sinfi mavjud.




II.BOB. INDEKSLAR

2.1-§.Indеkslar va ularning xossalari.


Har qanday r tub Modul bo`yicha boshlang`ich ildiz mavjudligi bilan tanishgan edik. Ma’lumki, g son r tub Modul bo`yicha boshlang`ach ildiz bo`lsa, u holda

g0,g1,g2,...,gp-2 (1)

sonlar qatori shu r Modul bo`yicha chegirmalarning keltirilgan sistemasini tashkil qiladi. (1) ketma-ketlikning hadlari r bilan o`zaro tub bo`lib, ular r Modul bo`yicha (r)= r-1 ta sinfning vakillaridan iboratdir. ^


Download 322.58 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling