Maple dasturi yordamida aniqmas va aniq integrallarni hisoblash


Download 439.9 Kb.
bet7/9
Sana27.03.2023
Hajmi439.9 Kb.
#1298592
1   2   3   4   5   6   7   8   9
Bog'liq
Aniqmas integral

int(f(x),x=a..infinity); buyrug’i qanday vazifani bajaradi?

  • Maple dasturida funksiyaning aniq integralini qaysi buyruqlar orqali hisoblanadi? Misollar bilan.

  • Maple dasturida funksiyaning xosmas integralini hisoblash buyrug’ini ayting? Misollar bilan.

  • Maple dasturida xosmas integrallarda bo’laklab integrallash va o’zgaruvchini almashtirish buyruqlarini ayting. Misolar bilan.

  • Quyidagi integrallarini hisoblang.




    1


    4
    𝑑𝑥

    1 + 2𝑥 + 1
    0

    6


    2
    ∫ 𝑓(𝑥) 𝑑𝑥 , agar 𝑓(𝑥) = {𝑥2, 0 𝑥 1
    𝑥, 1 < 𝑥 ⩽ 2
    0

    2


    π
    ∫ 𝑥3 sin 𝑥 𝑑𝑥
    0

    7


    2
    |1 − 𝑥| 𝑑𝑥
    0

    3


    1
    ∫ 𝑒𝑥 arcsin 𝑒−𝑥 𝑑𝑥
    0

    8


    𝑒
    ∫ sin ln 𝑥 𝑑𝑥
    1

    4


    sinh 2
    1
    ∫ 𝑑𝑥
    √1 + 𝑥2
    sinh 1

    9


    2
    3

    𝑥 + 𝑥2 𝑑𝑥
    −1

    5


    3
    ∫ sign(𝑥 − 𝑥3) 𝑑𝑥
    0

    10


    6
    π𝑥
    [𝑥] sin 𝑑𝑥 6
    0

    1. Ko’rsatilgan almashtirishni bajarib integrallarni hisoblang.




    1


    𝑒3
    1
    ∫ 𝑑𝑥, ln 𝑥 = 𝑡
    𝑥 ln 𝑥 ln(ln 𝑥)
    𝑒𝑒

    6


    2𝑎
    𝑥2
    ∫ 𝑑𝑥 , 𝑥 = 𝑎 ∙ sinh 𝑡
    √𝑎2 + 𝑥2
    𝑎

    2


    5
    𝑑𝑥
    3 , 𝑥 = sin 𝑡
    2 (1 − 𝑥2)2

    7


    π
    2



    ∫ cos5 𝑥 √sin 𝑥 𝑑𝑥, sin 𝑥 = 𝑡2
    π
    3

    3


    3
    𝑥
    ∫ 𝑥𝑑𝑥, 𝑥 = sin2 𝑡 4 − 𝑥
    2

    8


    7
    1
    ∫ 𝑑𝑥, 𝑥 − 1 = 8 sin2 𝑡
    (𝑥 − 1)(8 − 𝑥)
    2

    4


    𝑒−1
    arctan 𝑥 1
    𝑑𝑥, arctan 𝑥 = 𝑡
    𝑥 1 + 𝑥
    1

    9


    𝑒
    𝑑𝑥
    ∫ 𝑑𝑥, tanh 𝑥 = 𝑡3
    cosh2 𝑥 ∙ 3√tanh2 𝑥
    1

    5


    2
    ∫ (1 + 𝑥 − 1) 𝑒𝑥+1 𝑑𝑥, 𝑥 + 1 = 𝑡
    𝑥
    𝑥 𝑥
    1
    2

    10


    1
    1 + 𝑥2 1
    ∫ 𝑑𝑥, 𝑥 − = 𝑡 1 + 𝑥4 𝑥
    −1

    1. Quyidagi integrallarda bo’laklab integrallash formulasidagi berilgan 𝒖 funksiya orqali bo’laklab integrallang va uni hisoblang.

      1


      1
      5 5
      ∫ 𝑥5 𝑒𝑥 𝑑𝑥, 𝑢 = 𝑒𝑥
      −1

      5


      ln 4
      𝑥𝑒𝑥
      ∫ 𝑑𝑥, 𝑢 = 𝑥𝑒𝑥
      (𝑥 + 1)2
      ln 3

      2

      3
      𝑒arctg 𝑥 1
      3 𝑑𝑥, 𝑢 =
      (1 + 𝑥2)2 √1 + 𝑥2
      0


      6


      π
      3
      𝑥
      ∫ 𝑑𝑥, 𝑢 = 𝑥 cos2 𝑥
      π
      4

      3


      1

      ∫ 𝑒√𝑥 𝑑𝑥, 𝑢 = 𝑒√𝑥 0



      7



      6
      ln(sin 𝑥)
      ∫ 𝑑𝑥, 𝑢 = ln(sin 𝑥) sin2 𝑥
      π
      2

      4


      𝑒
      ln 𝑥 2 ln2 𝑥
      ∫ ( ) 𝑑𝑥, 𝑢 =
      𝑥 𝑥
      1

      8


      1
      ∫ arcsin 𝑥 𝑑𝑥 , 𝑢 = arcsin 𝑥
      0

    2. Quyidagi integrallarni 𝜀 aniqlikkacha taqribiy hisoblang.




    1


    1
    ∫ sin 𝑥2 𝑑𝑥, 𝜀 = 0.001
    0

    5


    1
    4
    ∫ 𝑒−𝑥2 𝑑𝑥, 𝜀 = 0.0001
    0

    2


    1
    2
    ∫ cos 𝑥2 𝑑𝑥, 𝜀 = 0.0001
    0

    6


    π
    sin 𝑥 𝑑𝑥, 𝜀 = 10−8
    𝑥7
    π
    2

    3


    1
    16
    4𝑥 𝑒𝑥2 𝑑𝑥, 𝜀 = 0.001
    0

    7


    2
    arctg 𝑥
    ∫ 𝑑𝑥, 𝜀 = 10−6
    𝑥
    1

    4


    2
    ln(1 + 𝑥)
    ∫ 𝑑𝑥, 𝜀 = 0.00001
    𝑥
    1

    8


    π
    sin 𝑒𝑥
    ∫ 𝑑𝑥, 𝜀 = 10−5
    𝑒𝑥2
    𝑒

    1. Quyidagi xosmas integrallarni hisoblang.




    1


    +
    𝑑𝑥

    (1 + 𝑥 + 𝑥2)2
    −∞

    6


    +
    𝑥𝑒arctg 𝑥
    ∫ 𝑑𝑥
    (1 + 𝑥2)√1 + 𝑥2
    0

    2


    +
    𝑥 ln 𝑥

    (1 + 𝑥2)2
    0

    7


    +
    arctg(1 − 𝑥)
    ∫ 𝑑𝑥
    3(𝑥 − 1)4
    0

    3


    1
    𝑑𝑥

    √1 − 𝑥2
    −1

    8


    +
    tg 𝑥
    ∫ 𝑑𝑥
    𝑥
    0

    4


    1
    ∫ ln 𝑥 𝑑𝑥
    0

    9


    +
    ∫ sin(𝑥2) 𝑑𝑥
    −∞

    5


    π
    2
    ∫ ln(sin 𝑥) 𝑑𝑥
    0

    10


    π
    2
    ∫ sin 𝑥 ln(sin 𝑥) 𝑑𝑥
    0

    1. Quyidagi parametrga bog’liq integrallarda parametr bo’yicha olingan hosilasini toping.

    1

    cos 𝑥
    𝐹(𝑡) = ∫ cos(π𝑡3) 𝑑𝑡, 𝐹(𝑡)−?
    sin 𝑥

    5

    ln(𝑥+𝑦)
    𝐹(𝑥) = ∫ 𝑥 + 𝑦Γ(𝑦 + 𝑥) 𝑑𝑦, 𝐹(𝑥)−?
    ln(𝑥−𝑦)

    2

    𝑥2
    𝐹(𝑥) = ∫ 𝑒𝑥𝑦2 𝑑𝑦, 𝐹(𝑥)−?
    𝑥

    6

    𝑦2
    sin(𝑥𝑦)
    𝐹(𝑦) = ∫ 𝑑𝑥, 𝐹(𝑦)−?
    𝑥
    𝑥+𝑦

    3

    cos α
    𝐹(α) = ∫ 𝑒α1𝑥2 𝑑𝑥, 𝐹(α)−?
    sin α

    7

    𝑦2 cos(𝑥+𝑦)
    𝐹(𝑥) = ∫ tg sin(𝑥𝑦)) 𝑑𝑦, 𝐹(𝑥)−?

    (
    𝑦
    𝑥− 𝑦
    ln(𝑥𝑦)

    4

    𝑥−2
    𝐹(𝑥) = ∫ sin(𝑦 − 𝑥) 𝑑𝑦, 𝐹(𝑥)−?
    𝑥

    8

    𝑎𝑟𝑐𝑡𝑔(𝑥−𝑦)
    𝐹(𝑥) = ∫ ln(𝑦𝑥(𝑥 + 𝑦)2) 𝑑𝑥, 𝐹(𝑥)−?
    arcsin 𝑦





    1. Biror chegaralangan Ω to’plamda aniqlangan 𝑓(𝑥, 𝑦) funksiyaning ikki karrali integrali deganda, quyidagi songa aytiladi:




    ∬ 𝑓(𝑥, 𝑦)𝑑Ω = lim
    max|𝛥𝑥𝑖|→0
    ∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑖)Δ𝑥𝑖Δ𝑦𝑖

    Ω max|𝛥𝑦𝑖|→0 𝑖 𝑗
    bunda Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖, Δ𝑦𝑗 = 𝑦𝑗+1 − 𝑦𝑗 va (𝑥𝑖, 𝑦𝑗) ∈ Ω . Agar Ω soha
    𝑎 ⩽ 𝑥 ⩽ P, 𝓎1(𝑥) ⩽ 𝑦 ⩽ 𝓎2(𝑥) bunda 𝓎1(𝑥), 𝓎2(𝑥) ∈ C[𝑎,P]
    tengsizlik bilan berilgan bo’lsa, u holda yuqoridagi ikki karrali integral quyidagicha takroriy integralga keltirib hisoblanadi:
    P 𝟐(𝒙) P 𝟐(𝒙)
    ∬ 𝑓(𝑥, 𝑦)𝑑Ω = ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦 (= ∫ ( ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦) 𝑑𝑥)

    Ω 𝑎
    𝟏(𝒙)
    𝑎 𝟏(𝒙)



    Ikki karrali integralda o’zgaruvchilarni almashtirish:


    Agar

    𝑥 = 𝑥(𝑢, 𝑣)


    𝑦 = 𝑦(𝑢, 𝑣)


    𝗅
    uzluksiz differensiallanuvchi funksiyalar sistemasi, O𝑥𝑦 tekislikdagi Ω sohani O𝑢𝑣
    tekislikdagi Ωsohaga bir qiymatli akslantirsa va yakobiani
    𝐷(𝑥, 𝑦) 𝑥𝑢 𝑦𝑢

    bo’lsa,
    𝐼 = 𝐷(𝑢, 𝑣) = |𝑥𝑣 𝑦𝑣 | 0



    ∬ 𝑓(𝑥, 𝑦)𝑑Ω = ∬ 𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣))|𝐼| 𝑑Ω′


    Ω Ω′
    formula o’rinli.
    Maple dasturida ikki karrali integralni hisoblash uchun
    >Doubleint(f(x,y),x,y);
    >Doubleint(f(x,y),x=a..b,y=c..d);
    buyruqlaridan foydalaniladi. 1 – buyruq

    ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥) 𝑑𝑦
    ning analitik ko’rinishini, 2 – buyruqda a, b, c, d lar o’zgarmas yoki o’zgaruvchi miqdorlar bo’lib,
    𝑑 P
    ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦) 𝑑𝑥
    𝓪
    ning analitik ko’rinishini chop etadi. Demak,
    >Doubleint(f(x,y),y=c..d, x=a..b);

    buyrug’i
    P 𝑑

    ∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
    𝓪
    ning matematik ifodasini chop etadi. Ularning qiymatini aniqlash uchun esa value
    funksiyasidan foydalaniladi. Misollar bilan tanishamiz:

    >restart;


    >with(student):

    >Doubleint(f(x,y),x,y);


    f( x, y ) dx dy

    >Doubleint(f(x,y),x=a..b,y=c..d);


    d b

    >Doubleint(x-y,x,y);


    >value(%);
    f( x, y ) dx dy

     
    c a
    x y dx dy
    1 x2 y 1 y2 x

    2 2

    >Doubleint(x+sin(x*y),x=1..2,y=1..3);


    3 2
    x  sin( y x ) dx dy



    >value(%);


    1 1

    Ci( 3 )  3  Ci( 6 )  Ci( 1 )  Ci( 2 )


    >Doubleint(x*y,y=x..x+1,x=2..3);


    3

    x  1
    y x dy dx



    >value(%);


    2 x


    91


    12

    Download 439.9 Kb.

    Do'stlaringiz bilan baham:
  • 1   2   3   4   5   6   7   8   9




    Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
    ma'muriyatiga murojaat qiling