-a>0
# x2 + y2+ 2x <1
x – y + a = 0 sistema yagona yechimga ega bo'ladigan a ning barcha qiymatlarini toping.
+a = 3; a = -1
-a = 3; a = 1
-a = -1
-a = 1
#Agar 2x + 4y = 1 bo'lsa, x2 + y2 ning eng kichik qiymatini toping.
+1/20
-1/10
-1
-1/5
#Hisoblang 1 + 2x + 3x2 + 4x3 + …+ (n + 1) xn ( x 1 )
+
-
-
-
#(4/5)x = 4 tenglama yechimi qaysi oraliqda yotadi?
+(-; -1)
-(0; 1)
-[2; )
-(-1; 0)
#|x| (x2 – 4) = -1 tenglama nechta ildizga ega?
+4
-1
-2
-3
# tenglama nechta ildizga ega ?
+1
-
-2
-3
# tenglama nechta ildizga ega?
+1
-2
-3
-
#Hisoblang:
+19,5
-15,5
-7,5
-20,5
#Soddalashtiring:
+a
-1,5a
-3a
-2,5a
#Agar x2 + 4xy + y2 = 15 + 3xy, x + y =4 bo’lsa, xy=?
+1
-0
-2
-3
# > 1 tenglama nechta butun yechimga ega?
+6
-2
-3
-4
#Tengsizlikni yeching: |x2 – 6| < 1
+
-
-
-
#tg = 1 / 2, tg = 2 / 3, tg = 9 / 10, , , - o'tkir burchaklar bo'lsa, ni va orqali ifodalang.
+ = -
- = -
- = +
- = 2 -
#Agar a2 + 9/a2 = 22 bo’lsa, a – 3/a ni hisoblang
+1
- 4
-3
-–3
#Agar f(x+1) = 3 - 2x va f( )= 6x-3 bo'lsa, ni toping
+4 – 3x
-3x – 4
-4x + 3
-4x – 3
#Hisoblang:
+0
-sin200
-
-cos280
#Hisoblang: lg tg220 + lg tg680 + lg sin900
+0
-1
-0,5
-0,6
#Hisoblang:
+5
-4
-3
-2
#y = x2 funksiyaning grafigi vektorga parallel ko‘chirilgan bo’lsa, uning tenglamasini aniqlang.
+y = x2 + 6x + 4
-y = x2 + 5
-y = x2 – 1
-y = x2 +9
#Funksiyaning qiymatlar sohasini toping:
+[0; 1/2]
-[0; 1]
-[1/2; 1]
-[0; 2]
#Agar bo’lsa, ni toping
+
-
-
-
#(-; 2]