Cheksiz kichik ketma-ketliklar va ularning xossalari.
4.5-Ta’rif. Agar n=0 bo’lsa, u holda ( n ) ketma-ketlik cheksiz kichik miqdor yoki cheksiz kichik ketma-ketlik deyiladi.
Agar xn =a bo’lsa, u holda n=xn-a cheksiz kichik miqdor bo’ladi. Haqiqatan, ketma-ketlik limiti ta’rifiga binoan har bir >0 uchun n0 natural son topilib, n>n0 lar uchun | n|=|xn-a|< tengsizlik o’rinli.
Aksincha, agar n=xn-a cheksiz kichik miqdor bo’lsa, u holda xn=a bo’ladi.
Demak, a son (xn) ketma-ketlikning limiti bo’lishi uchun uni x=a+ n ko’rinishda ifodalanishi zarur va yetarlidir, bu yerda n cheksiz kichik miqdor.
4.1-lemma. Chekli sondagi cheksiz kichik miqdorlarning yig’indisi (ko’paytmasi) cheksiz kichik miqdor bo’ladi.
Isbot. n va n lar cheksiz kichik bo’lsa, u holda n= n + n ni cheksiz kichik bo’lishini ko’rsatamiz. n =0 dan har bir >0 uchun n1 nomer topilib, n>n1 lar uchun | n|< tengsizlik o’rinli bo’ladi. Xuddi shu kabi n2 nomer topilib, n>n2 lar uchun | n |< tengsizlik o’rinli bo’ladi. n0=max(n1,n2) deb olsak, n>n0 lar uchun | n|< va | n |< tengsizliklarning har biri o’rinli bo’ladi. Bundan | n |<| n+ n | | n |+| n | < = tengsizlik kelib chiqadi. Demak, n -cheksiz kichik miqdor.
n va n lar ko’paytmasi cheksiz kichik miqdor bo’lishi huddi shunday isbotlanadi.
Do'stlaringiz bilan baham: |