Matematika ta’lim yo’nalishi kurs ishi mavzu
Download 325.24 Kb.
|
Matematika ta’lim yo’nalishi kurs ishi mavzu
1.3.Teorema Agar (xn) ketma-ketlik o’suvchi bo’lib, yuqoridan chegaralangan bo’lsa, u chekli limitga ega; agar yuqoridan chegaralanmagan bo’lsa, u holda xn =+ bo’ladi.
Isbot. (xn) o’suvchi va yuqoridan chegaralangan bo’lsin. U holda { xn } to’plam ham yuqoridan chegaralangan bo’ladi, shuning uchun uning aniq yuqori chegarasi mavjud, uni a=sup{ xn } deb olaylik, a ni (xn) ketma-ketlikning limiti bo’lishligini ko’rsatamiz. a son { xn } to’plamning aniq yuqori chegarasi bo’lganidan barcha n N lar uchun xn a va har bir >0 uchun shunday n0 mavjud bo’lib, >a- bo’ladi. (xn) o’suvchi ketma-ketlik bo’lganligidan barcha n>n0 lar uchun bo’ladi. Yuqoridagilardan a- < xn tengsizlik kelib chiqadi. Bundan ta’rifga binoan xn =a bo’ladi. Endi (xn) o’suvchi bo’lib, yuqoridan chegaralanmagan bo’lsin, u holda har bir M>0 son uchun shunday n0 N son topilib, >M bo’ladi. (xn) o’suvchi bo’lganligidan n>n0 lar uchun xn >M kelib chiqadi. Demak, xn=+ . 1.4.Teorema Agar (xn) ketma-ketlik kamayuvchi bo’lib, quyidan chegaralangan bo’lsa, u chekli limitga ega, agar quyidan chegaralanmagan bo’lsa, u holda xn =- bo’ladi.Bu teoremani yuqoridagi usulda isbotlash mumkin. 1.1 Misol. ketma-ketlikning limitini toping. Bundan barcha n N larda xn > xn+1 ekanligi kelib chiqadi. Bu ketma-ketlikning kamayuvchi ekanini ko’rsatadi. Barcha xn >0 ekanligidan (xn)=( ) ketma-ketlikning chekli limitga ega ekanligini kelib chiqadi. Uni xn =a bilan belgilasak, xn+1= xn dan a=a0 bo’lib, a=0 kelib chiqadi. Demak, =0 ekan. 1.2-misol. xn= ketma-ketlikning limitini toping, bu yerda a>0. Bu yerda bo’lib, barcha n N larda xn Endi matematik induktsiya yordamida (xn) ketma-ketlikni yuqoridan chegaralangan ekanligini ko’rsatamiz. Ravshanki, , n=k uchun deb faraz qilib, ekanligini ko’rsatamiz: Demak, barcha n N lar uchun . Yuqoridagi teoremalarga binoan (xn) ketma-ketlik chekli limitga ega. Uni b desak, tenglikdan b= kelib chiqadi. Bundan esa b= kelib chiqadi. Shunday qilib, xn = ekan. Download 325.24 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling