Matematika va Informatika” bakalavriat ta’lim yo’nalishi 104-guruh talabasi Narzullayev Azamatjon Norbo’ta o’g’lining


Download 401.52 Kb.
bet6/11
Sana09.06.2023
Hajmi401.52 Kb.
#1471380
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Mat analiz mustaqil ish

5-TA’RIF: (22) tenglik orqali aniqlanadigan

soni f(x) funksiyaning [a,b] kesmadagi o‘rta qiymati deb ataladi.
ANIQ INTЕGRALLARNI HISOBLASH USULLARI


Aniq integralni ta’rif bo‘yicha hisoblash.
Nyuton – Leybnits formulasi.
Bo‘laklab integrallash usuli.
Aniq integralda o‘zgaruvchini almashtirish usuli.
Aniq integrallarni taqribiy hisoblash .

Aniq integralni ta’rif bo‘yicha hisoblash. Biz aniq integral ta’rifi va asosiy xossalarini o‘rgangan bo‘lsak ham, ammo hozircha faqat bitta f(x)=1 o‘zgarmas funksiyadan [a,b] kesma bo‘yicha olingan aniq integral qiymatini bilamiz xolos. Bu yo‘nalishda yana bir misol sifatida f(x)=x funksiyadan [a,b] kesma bo‘yicha olingan



aniq integralni uning ta’rifidan foydalanib hisoblaymiz. f(x)=x funksiya [a,b] kesmada uzluksiz bo‘lgani uchun u integrallanuvchi, ya’ni I aniq integral mavjud. Unda, ta’rifga asosan, [a,b] kesmani ixtiyoriy ravishda kichik [xi–1, xi] kesmachalarga bo‘laklab va ulardan istalgan ξi nuqtalarni tanlab,

integral yig‘indini hosil etib, uning n→∞, maxΔxi0 bo‘lgandagi limitini topsak, bu limit qiymati doimo bir xil bo‘ladi va I integral qiymatini ifodalaydi. Shu sababli biz [a,b] kesmani o‘zaro teng bo‘lgan n bo‘lakka ajratamiz. Bu holda hosil bo‘lgan har bir [xi–1, xi] kesmachaning uzunligi bir xil va Δxi=h=(b–a)/n, ularning chegaralari esa xi=a+ih, i=0,1,2,∙∙∙, n–1, n kabi aniqlanadi.Har bir [xi–1, xi] kesmachalardan ξi nuqta sifatida uning chap chegarasini, ya’ni ξi =xi–1 (i=1,2,∙∙∙, n) deb olamiz. Bu holda integral yig‘indi quyidagi ko‘rinishda bo‘ladi:

.
Bu yerdan, aniq integral ta’rifi va limit xossalariga asosan,


natijani olamiz. Demak,
. (1)
Bu natijaga aniq integralning geometrik ma’nosidan foydalanib ham kelish mumkin. Haqiqatan ham, (1) aniq integral y=x, x=a, x=b va y=0 chiziqlar bilan chegaralangan aABb trapetsiya (4-rasmga qarang) yuzini ifodalaydi. Chizmadan ko‘rinadiki, bu trapetsiyaning balandligi H=b–a, asoslari esa a va b. Shu sababli
.



4-rasm

Nyuton – Leybnits formulasi. Oldingi natijalardan ko‘rinadiki, aniq integralni uning ta’rifi, ya’ni integral yig‘indining limiti orqali topish masalasi hatto oddiy y=x funksiya misolida ancha qiyinchilik bilan yechiladi. Shu sababli aniq integralni hisoblashning qulayroq, osonroq usulini topish masalasi paydo bo‘ladi. Bu masala integral hisobning asosiy formulasi bo‘lmish Nyuton – Leybnits formulasi orqali o‘z yechimini topadi. у=f(х) biror [а,b] kesmada uzluksiz funksiya bo‘lsin. Unda у=f(х) bu [а,b] kesmada integrallanuvchi funksiya bo‘ladi. Bu yerdan ixtiyoriy x[а,b] uchun
(2)
aniq integral mavjud ekanligi kelib chiqadi. Bunda quyi chegara a o‘zgarmas, yuqori chegara x esa o‘zgaruvchi deb qaralsa, unda (2) tenglik [а,b] kesmada aniqlangan biror Ф(x) funksiyani ifodalaydi va yuqori chegarasi o‘zgaruvchi integral deb ataladi. Bu funksiya differensial va integral hisob orasidagi chuqur bog‘lanishni ifodalovchi quyidagi muhim xususiyatga ega.
1-TEOREMA: Agar (1) tenglikda f(x) uzluksiz funksiya bo‘lsa , unda Ф(x) funksiya differensiallanuvchi va
(3)
tеnglik o‘rinli bo‘ladi.
Isbot: Ф(x) funksiya differensiallanuvchi ekanligini va uning hosilasini ta’rif bo‘yicha topamiz. Buning uchun uning х argumеntiga ∆х orttirma berib va, aniq integralning oldin ko‘rib o‘tilgan V xossasidan foydalanib, ∆Ф(х) funksiya orttirmasini quyidagi ko‘rinishda yozamiz:


Bu tenglikni, aniq integralning oldin ko‘rsatilgan o‘rta qiymati haqidagi xossasiga asosan,

ko‘rinishda yozish mumkin. Bu yerdan, hosila ta’rifi va f(x) funksiya uzluksizligiga asosan,

natijani, ya’ni isbotlanishi kerak bo‘lgan (3) tenglikni hosil qilamiz. Bu natijani olishda [x, xx] bo‘lgani uchun х0 holda x bo‘lishidan foydalanildi.
Izoh: Bu teoremadan (2) tenglik bilan aniqlangan Ф(х) berilgan uzluksiz f(x) funksiya uchun boshlang‘ich funksiya bo‘lishi kelib chiqadi. Demak, har qanday uzluksiz funksiya uchun uning boshlang‘ich funksiyasi mavjud va uni (2) formula orqali topish mumkin ekan.

Download 401.52 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling