Matematika va Informatika” bakalavriat ta’lim yo’nalishi 104-guruh talabasi Narzullayev Azamatjon Norbo’ta o’g’lining
Download 401.52 Kb.
|
Mat analiz mustaqil ish
- Bu sahifa navigatsiya:
- Aniq integralning xossalari.
1-TEOREMA: Berilgan [a,b] kesmada chegaralangan va unda chekli sondagi uzilish nuqtalariga ega bo‘lgan f(x) funksiya shu kesmada integrallanuvchi bo‘ladi.
NATIJA: Berilgan [a,b] kesmada uzluksiz bo‘lgan f(x) funksiya shu kesmada integrallanuvchi bo‘ladi. Haqiqatan ham, Veyershtrass teoremasiga asosan (VI bob, §4) [a,b] kesmada uzluksiz f(x) funksiya shu kesmada chegaralangan bo‘lib, oldingi teorema shartlarini qanoatlantiradi va shu sababli bu kesmada integrallanuvchidir. Bu tasdiqlardan funksiyalarning nisbatan keng sinfi uchun ularning aniq integrallari mavjud ekanligini ko‘ramiz. Aniq integrallarning qiymatini topish (integralni hisoblash) masalasini kelgusiga qoldirib, bu masalani yechish uchun kerak bo‘ladigan aniq integralning xossalari bilan tanishamiz. 1.3 Aniq integralning xossalari. Avvalo yuqorida ko‘rib o‘tilgan aniq integral ta’rifiga ikkita qo‘shimcha kiritamiz. Aqar aniq integralda quyi a va yuqori b chegaralar (a<b) o‘rni almashsa, unda (12) tenglik o‘rinli deb qabul etamiz. Bunday qarorni quyidagicha tushuntirish mumkin. (12) tenglikning chap tomonidagi integralda x integrallash o‘zgaruvchisi OX o‘qda x=a nuqtadan x=b nuqtaga qarab o‘sadi va shu sababli хi=хi–хi–1>0 bo‘ladi. O‘ng tomondagi integralda esa aksincha bo‘lib, x integrallash o‘zgaruvchisi x=b nuqtadan x=a nuqtaga qarab kamayib boradi va unda δxi= хi–1–хi= –хi<0 bo‘ladi. Demak, (12) tenglikdagi integrallar uchun ularning integral yig‘indilari faqat ishoralari bilan farq qiladi. Bu yerdan, limit xossasiga asosan, (12) tenglikni qabul etish mumkinligini ko‘ramiz. (12) tenglikdan (13) deb qabul qilishimiz mumkinligi kelib chiqadi. Haqiqatan ham bu holda . Izoh: Aniq integral ta’rifini ifodalovchi (11) tenglikdan ko‘rinadiki, uning qiymati biror sondan iborat bo‘ladi. Bu son faqat integral ostidagi f(x) funksiya va [a,b] integrallash kesmasiga bog‘liq bo‘lib, integrallash o‘zgaruvchisiga bog‘liq emas. Shu sababli aniq integralda integrallash o‘zgaruvchisini har xil belgilash mumkin, ya’ni . I xossa: Aniq integralda o‘zgarmas ko‘paytuvchini integral belgisidan tashqariga chiqarish mumkin, ya’ni k o‘zgarmas son bo‘lsa,unda (14) tenglik o‘rinli bo‘ladi. Isbot: Aniq integral ta’rifi va limit xossasiga asosan . II xossa: Ikki yoki undan ortiq funksiyalar algebraik yig‘indisining aniq integrali qo‘shiluvchilar aniq integrallarining algebraik yig‘indisiga teng bo‘ladi, ya’ni (15) tenglik o‘rinli bo‘ladi. Bunda tenglikning o‘ng tomonidagi aniq integrallar mavjud deb hisoblanadi. Isbot: Aniq integral ta’rifi va limit xossasiga asosan . III xossa: Agar [а, b] kesmada f(x)0 va integrallanuvchi bo‘lsa, unda uning aniq integrali uchun (16) tengsizlik o‘rinli bo‘ladi. Isbot: Bu holda integral yig‘indida f(ξi)≥0, Δxi>0 (i=1,2,3,∙∙∙, n) bo‘lgani uchun va aniq integral ta’rifi hamda limit xossasiga asosan , ya’ni (16) tengsizlik o‘rinli ekanligi kelib chiqadi. IV xossa: Agar [а, b] kesmada f(x) va g(x) funksiyalar integrallanuvchi hamda f(x)≤ g(x) bo‘lsa, unda ularning aniq integrallari uchun (17) tengsizlik o‘rinli bo‘ladi. Isbot: II xossaga asosan h(x)=g(x)–f(x) funksiya berilgan [а,b] kesmada integrallanuvchi bo‘ladi. Bundan tashqari f(x)≤g(x) shartdan h(x)0 ekanligi kelib chiqadi. Unda, IV va II xossalardan foydalanib, (17) tengsizlikka quyidagicha erishamiz: . 0> Download 401.52 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling