Mathcad dasturida differensiallash reja: Mathcad dasturi duffernsiyasi Mathcad dasturida differensiallash dasturi


Download 151.54 Kb.
bet5/5
Sana20.06.2023
Hajmi151.54 Kb.
#1627904
1   2   3   4   5
Bog'liq
MATHCAD DASTURIDA DIFFERENSIALLASH

Karrali integrallarni hisoblash
Maple muhitida ikki va uch karali integrallarni hisoblash uchun maxsus buyruqlar mavjud. Ikki karrali integralni hisoblash uchun Doubleint(f(x, y), D) buyrug’i ishlatiladi, bu yerda D – integrallash sohasi bo’lib, quyidagi ko’rinishlardan birida yoziladi:

  1. x=x1..x2, y=y1..y2, bu yerda x1, x2, y1, y2 sonlar integrallashning to’rt burchakli sohasini aniqlaydi;

  2. x=f1(y)..f2(y), y=y1..y2, bu yerda f1(y), f2(y) –chiziqlar bo’lib y1 dan y2 gacha intervalda integrallash sohasini chap va o’ngdan chegaralaydi;

  3. x=x1..x2, y=g1(x)..g2(x) , bu yerda g1(y), g2(y) - chiziqlar bo’lib x1 dan x2 gacha intervalda integrallash sohasini quyi va yuqorian chegaralaydi.

Uch karali integrallar ni hisoblash uchun Tripleint(f(x, y, z),x, y, z, V) buyrug’i ishlatiladi, bu yerda V – integrallash sohasi.
Ikkala buyruq ham bekor qilingan amal buyrug’i hisoblanadi. Integralni sonli qiymatini olish uchun value(%) buyrug’i ishlatiladi.
Takroriy integrallarni int buyruqlarini takroran yozish orqali bajarish mumkin, masalan, takroriy integral quyidagicha hisoblanadi:
> int(int(x^2*y^3, x=0..1), y=0..2);

Misollar
1. Aniqmas integrallarni toping:
a) ;
> Int(cos(x)*cos(2*x)*cos(3*x),x)=int(cos(x)*cos(2*x)*cos(3*x), x);


b)
> Int((3*x^4+4)/(x^2*(x^2+1)^3),x)= int((3*x^4+4)/(x^2*(x^2+1)^3),x);

2. Aniq integralni hisoblang: , bu yerda a > 0, b > 0.
> assume (a>0); assume (b>0); >Int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2),x=0..Pi/2)=int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2),x=0..Pi/2);

3. Xosmas integralni toping: , bunda a>-1
> restart; assume(a>-1);
> Int((1-exp(-a*x^2))/(x*exp(x^2)), x=0..+infinity)=int((1-exp(-a*x^2))/(x*exp(x^2)), x=0..+infinity);

4. Integralni sonli qiymatini toping:
> Int(cos(x)/x, x=Pi/6..Pi/4)=evalf(int(cos(x)/x, x=Pi/6..Pi/4), 15);

5. Bo’laklab integrallashning barcha bosqichlarini bajaring: .
> restart; with(student): J=Int(x^3*sin(x),x);

> J=intparts(Int(x^3*sin(x),x),x^3);

> intparts(%,x^2);

> intparts(%,x);

> value(%);

6. Universal o’rniga qo’yish tg(x/2)=t bilan integralni hisoblang:
.
> J=Int(1/(1+cos(x)), x=-Pi/2..Pi/2);

> J=changevar(tan(x/2)=t,Int(1/(1+cos(x)), x=-Pi/2..Pi/2), t);

> value(%);
J=2
7. takroriy integralni hisoblang.
> Int(Int(y^3/(x^2+y^2),x=0..y),y=2..4)=
int(int(y^3/(x^2+y^2), x=0..y),y=2..4);

2. chiziqlar bilan chegaralangan ikki karrali integralni hisoblang.
Izoh: avval integrallash sohasi D ni tengsizlik ko’rinishida yozamiz:
> restart: with(student):
> J:=Doubleint(sin(x+2*y), x=y..Pi/2-y, y=0..Pi/2);

> J:=value(%);

3. uch karrali integralni hisoblang.
> J:=Tripleint(4+z, y=x^2..1,x=-1..1, z=0..2);

> J:=value(%);

Download 151.54 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling